Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The emerging role of lncRNAs in cancer

      Nature Medicine

      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is increasingly evident that many of the genomic mutations in cancer reside inside regions that do not encode proteins. However, these regions are often transcribed into long noncoding RNAs (lncRNAs). The recent application of next-generation sequencing to a growing number of cancer transcriptomes has indeed revealed thousands of lncRNAs whose aberrant expression is associated with different cancer types. Among the few that have been functionally characterized, several have been linked to malignant transformation. Notably, these lncRNAs have key roles in gene regulation and thus affect various aspects of cellular homeostasis, including proliferation, survival, migration or genomic stability. This review aims to summarize current knowledge of lncRNAs from the cancer perspective. It discusses the strategies that led to the identification of cancer-related lncRNAs and the methodologies and challenges involving the study of these molecules, as well as the imminent applications of these findings to the clinic.

          Related collections

          Most cited references 126

          • Record: found
          • Abstract: found
          • Article: not found

          Signatures of mutational processes in human cancer

          All cancers are caused by somatic mutations. However, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here, we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, kataegis, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer with potential implications for understanding of cancer etiology, prevention and therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis

            Large intervening noncoding RNAs (lincRNAs) are pervasively transcribed in the genome1, 2, 3 yet their potential involvement in human disease is not well understood4,5. Recent studies of dosage compensation, imprinting, and homeotic gene expression suggest that individual lincRNAs can function as the interface between DNA and specific chromatin remodeling activities6,7,8. Here we show that lincRNAs in the HOX loci become systematically dysregulated during breast cancer progression. The lincRNA termed HOTAIR is increased in expression in primary breast tumors and metastases, and HOTAIR expression level in primary tumors is a powerful predictor of eventual metastasis and death. Enforced expression of HOTAIR in epithelial cancer cells induced genome-wide re-targeting of Polycomb Repressive Complex 2 (PRC2) to an occupancy pattern more resembling embryonic fibroblasts, leading to altered histone H3 lysine 27 methylation, gene expression, and increased cancer invasiveness and metastasis in a manner dependent on PRC2. Conversely, loss of HOTAIR can inhibit cancer invasiveness, particularly in cells that possess excessive PRC2 activity. These findings suggest that lincRNAs play active roles in modulating the cancer epigenome and may be important targets for cancer diagnosis and therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circular RNAs are a large class of animal RNAs with regulatory potency.

              Circular RNAs (circRNAs) in animals are an enigmatic class of RNA with unknown function. To explore circRNAs systematically, we sequenced and computationally analysed human, mouse and nematode RNA. We detected thousands of well-expressed, stable circRNAs, often showing tissue/developmental-stage-specific expression. Sequence analysis indicated important regulatory functions for circRNAs. We found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7. Further analyses indicated that CDR1as functions to bind miR-7 in neuronal tissues. Human CDR1as expression in zebrafish impaired midbrain development, similar to knocking down miR-7, suggesting that CDR1as is a miRNA antagonist with a miRNA-binding capacity ten times higher than any other known transcript. Together, our data provide evidence that circRNAs form a large class of post-transcriptional regulators. Numerous circRNAs form by head-to-tail splicing of exons, suggesting previously unrecognized regulatory potential of coding sequences.
                Bookmark

                Author and article information

                Journal
                Nature Medicine
                Nat Med
                Springer Science and Business Media LLC
                1078-8956
                1546-170X
                November 2015
                November 5 2015
                November 2015
                : 21
                : 11
                : 1253-1261
                Article
                10.1038/nm.3981
                26540387
                © 2015

                http://www.springer.com/tdm

                Comments

                Comment on this article