+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Metronidazole. A therapeutic review and update.

      Antitrichomonal Agents, metabolism, pharmacology, therapeutic use, Bacterial Infections, drug therapy, Drug Therapy, Combination, Female, Humans, Metronidazole, Pregnancy, Pregnancy Complications, Infectious, Tissue Distribution

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The nitroimidazole antibiotic metronidazole has a limited spectrum of activity that encompasses various protozoans and most Gram-negative and Gram-positive anaerobic bacteria. Metronidazole has activity against protozoans like Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis, for which the drug was first approved as an effective treatment. Anaerobic bacteria which are typically sensitive are primarily Gram-negative anaerobes belonging to the Bacteroides and Fusobacterium spp. Gram-positive anaerobes such as peptostreptococci and Clostridia spp. are likely to test sensitive to metronidazole, but resistant isolates are probably encountered with greater frequency than with the Gram-negative anaerobes. Gardnerella vaginalis is a pleomorphic Gram-variable bacterial bacillus that is also susceptible to metronidazole. Helicobacter pylori has been strongly associated with gastritis and duodenal ulcers. Classic regimens for eradicating this pathogen have included metronidazole, usually with acid suppression medication plus bismuth and amoxicillin. The activity of metronidazole against anaerobic bowel flora has been used for prophylaxis and treatment of patients with Crohn's disease who might develop an infectious complication. Treatment of Clostridium difficile-induced pseudomembraneous colitis has usually been with oral metronidazole or vancomycin, but the lower cost and similar efficacy of metronidazole, coupled with the increased concern about imprudent use of vancomycin leading to increased resistance in enterococci, have made metronidazole the preferred agent here. Metronidazole has played an important role in anaerobic-related infections. Advantages to using metronidazole are the percentage of sensitive Gram-negative anaerobes, its availability as oral and intravenous dosage forms, its rapid bacterial killing, its good tissue penetration, its considerably lower chance of inducing C. difficile colitis, and expense. Metronidazole has notable effectiveness in treating anaerobic brain abscesses. Metronidazole is a cost-effective agent due to its low acquisition cost, its pharmacokinetics and pharmacodynamics, an acceptable adverse effect profile, and its undiminished antimicrobial activity. While its role as part of a therapeutic regimen for treating mixed aerobic/anaerobic infections has been reduced by newer, more expensive combination therapies, these new combinations have not been shown to have any therapeutic advantage over metronidazole. Although the use of metronidazole on a global scale has been curtailed by newer agents for various infections, metronidazole still has a role for these and other therapeutic uses. Many clinicians still consider metronidazole to be the 'gold standard' antibiotic against which all other antibiotics with anaerobic activity should be compared.

          Related collections

          Author and article information


          Comment on this article