Blog
About

759
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice.

      Cell

      Mice, Brain, pathology, Disease Models, Animal, Exons, genetics, Female, Humans, Huntington Disease, Male, Animals, Mice, Neurologic Mutants, Mice, Transgenic, Nerve Tissue Proteins, physiology, Nuclear Proteins, Phenotype, Spinal Cord, Transgenes, Trinucleotide Repeats

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Huntington's disease (HD) is one of an increasing number of neurodegenerative disorders caused by a CAG/polyglutamine repeat expansion. Mice have been generated that are transgenic for the 5' end of the human HD gene carrying (CAG)115-(CAG)150 repeat expansions. In three lines, the transgene is ubiquitously expressed at both mRNA and protein level. Transgenic mice exhibit a progressive neurological phenotype that exhibits many of the features of HD, including choreiform-like movements, involuntary stereotypic movements, tremor, and epileptic seizures, as well as nonmovement disorder components. This transgenic model will greatly assist in an eventual understanding of the molecular pathology of HD and may open the way to the testing of intervention strategies.

          Related collections

          Most cited references 26

          • Record: found
          • Abstract: not found
          • Article: not found

          A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes

           M. MacDonald (1993)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuropathological classification of Huntington's disease.

            In postmortem brain specimens from 163 clinically diagnosed cases of Huntington's disease (HD) the striatum exhibited marked variation in the severity of neuropathological involvement. A system for grading this severity was established by macroscopic and microscopic criteria, resulting in five grades (0-4) designated in ascending order of severity. The grade correlates closely with the extent of clinical disability as assessed by a rating scale. In five cases of clinically diagnosed HD there were no discernible neuropathological abnormalities (grade 0), suggesting that the anatomical changes lag behind the development of clinical abnormalities. In eight cases, neuropathological changes could only be recognized microscopically (grade 1). The earliest changes were seen in the medial paraventricular portions of the caudate nucleus (CN), in the tail of the CN, and in the dorsal part of the putamen. Counts of neurons in the CN reveal that 50% are lost in grade 1 and that 95% are lost in grade 4; astrocytes are greatly increased in grades 2-4. These studies indicate that analyses of the CN in grade 4 would reflect mainly its astrocytic composition with a component of remote neurons projecting to the striatum. Because of the relative preservation of the lateral half of the head of the CN in grades 1-2, these regions would reflect early cellular and biochemical changes in HD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy.

              X-linked spinal and bulbar muscular atrophy (Kennedy's disease) is an adult-onset form of motorneuron disease which may be associated with signs of androgen insensitivity. We have now investigated whether the androgen receptor gene on the proximal long arm of the X chromosome is a candidate gene for this disease. In patient samples we found androgen receptor gene mutations with increased size of a polymorphic tandem CAG repeat in the coding region. These amplified repeats were absolutely associated with the disease, being present in 35 unrelated patients and none of 75 controls. They segregated with the disease in 15 families, with no recombination in 61 meioses (the maximum log likelihood ratio (lod score) is 13.2 at a recombination rate of 0). The association is unlikely to be due to linkage disequilibrium, because 11 different disease alleles were observed. We conclude that enlargement of the CAG repeat in the androgen receptor gene is probably the cause of this disorder.
                Bookmark

                Author and article information

                Journal
                8898202

                Comments

                Comment on this article