204
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of interleukin-1 in the pathogenesis of human Intervertebral disc degeneration

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we investigated the hypotheses that in human intervertebral disc (IVD) degeneration there is local production of the cytokine IL-1, and that this locally produced cytokine can induce the cellular and matrix changes of IVD degeneration. Immunohistochemistry was used to localize five members of the IL-1 family (IL-1α, IL-1β, IL-1Ra (IL-1 receptor antagonist), IL-1RI (IL-1 receptor, type I), and ICE (IL-1β-converting enzyme)) in non-degenerate and degenerate human IVDs. In addition, cells derived from non-degenerate and degenerate human IVDs were challenged with IL-1 agonists and the response was investigated using real-time PCR for a number of matrix-degrading enzymes, matrix proteins, and members of the IL-1 family.

          This study has shown that native disc cells from non-degenerate and degenerate discs produced the IL-1 agonists, antagonist, the active receptor, and IL-1β-converting enzyme. In addition, immunopositivity for these proteins, with the exception of IL-1Ra, increased with severity of degeneration. We have also shown that IL-1 treatment of human IVD cells resulted in increased gene expression for the matrix-degrading enzymes (MMP 3 (matrix metalloproteinase 3), MMP 13 (matrix metalloproteinase 13), and ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs)) and a decrease in the gene expression for matrix genes (aggrecan, collagen II, collagen I, and SOX6).

          In conclusion we have shown that IL-1 is produced in the degenerate IVD. It is synthesized by native disc cells, and treatment of human disc cells with IL-1 induces an imbalance between catabolic and anabolic events, responses that represent the changes seen during disc degeneration. Therefore, inhibiting IL-1 could be an important therapeutic target for preventing and reversing disc degeneration.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Low back pain in relation to lumbar disc degeneration.

          Cross-sectional magnetic resonance imaging (MRI) study. To study the relation of low back pain (LBP) to disc degeneration in the lumbar spine. Controversy still prevails about the relationship between disc degeneration and LBP. Classification of disc degeneration and symptoms varies, hampering comparison of study results. Subjects comprised 164 men aged 40-45 years-53 machine drivers, 51 construction carpenters, and 60 office workers. The data of different types of LBP, individual characteristics, and lifestyle factors were obtained from a questionnaire and a structured interview. Degeneration of discs L2/L3-L5/S1 (dark nucleus pulposus and posterior and anterior bulge) was assessed with MRI. An increased risk of LBP (including all types) was found in relation to all signs of disc degeneration. An increased risk of sciatic pain was found in relation to posterior bulges, but local LBP was not related to disc degeneration. The risks of LBP and sciatic pain were strongly affected by occupation. Low back pain is associated with signs of disc degeneration and sciatic pain with posterior disc bulges. Low back pain is strongly associated with occupation.
            • Record: found
            • Abstract: found
            • Article: not found

            Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc.

            The histological and biochemical changes that occur in the extracellular matrix of the intervertebral disc (IVD) during ageing and degeneration have been investigated extensively. However, the mechanisms behind these changes are not fully understood. A number of studies have suggested the involvement of matrix metalloproteinases (MMPs) and ADAMTS in IVD degeneration, but few have localized the site of production of these enzymes to the cells of the degenerate disc. This study uses immunohistochemical techniques to localize and quantify the production of degrading enzymes (MMPs 1, 3, and 13, and ADAMTS 4) and their inhibitors (TIMPS 1, 2, and 3) within non-degenerate and degenerate discs of varying severity of degeneration. In all discs investigated, the cells that produced the enzymes and their inhibitors were the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus (AF), with little immunopositivity in the outer AF. Non-degenerate discs showed low numbers of cells expressing the degradative enzymes MMP 1 and ADAMTS 4, suggesting a role for these enzymes in normal homeostasis. No MMP 3 or MMP 13 immunopositivity was observed in non-degenerate discs. In degenerate discs, the number of cells immunopositive for MMPs 1, 3, 13 and ADAMTS 4 increased with the severity of degeneration. This increase in degrading enzymes was also accompanied by increases in the number of cells immunopositive for TIMPs 1 and 2 but not TIMP 3. This study highlights that although the expression of a number of MMPs increases with degeneration, this is accompanied by an increase in their inhibitors. However, the increase in the number of cells immunoreactive for ADAMTS 4 with increasing degeneration was not paralleled by a rise in its inhibitor TIMP 3. This finding indicates that the aggrecanases, rather then the MMPs, are a possible therapeutic target for the inhibition of disc degeneration. Copyright 2004 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
              • Record: found
              • Abstract: found
              • Article: not found

              Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs.

              To investigate the phenotype of cells in normal and degenerate intervertebral discs by studying the expression of molecules characteristic of chondrocytes in situ. Human intervertebral discs taken at surgery were graded histologically, and classified on this basis as normal or degenerate. Eighteen of each type were selected, and in situ hybridisation was performed for the chondrocytic markers Sox9 and collagen II using (35)S labelled cDNA probes. Aggrecan was located by immunohistochemistry, using the monoclonal antibody HAG7E1, and visualised with an avidin-biotin peroxidase system. In the normal discs, strong signals for Sox9 and collagen II mRNA, and strong staining for the aggrecan protein were seen for the cells of the nucleus pulposus (NP), but reactions were weak or absent over the cells of the annulus fibrosus (AF). In degenerate discs, the Sox9 and collagen II mRNA signals remained visible over the cells of the NP and were again absent in the AF. Aggrecan staining was not visible in the NP cells, and was again absent in the AF. Cells of the normal NP showed expression of all three markers, clearly indicating a chondrocytic phenotype. In degeneration, there was evidence of a loss of aggrecan synthesis, which may contribute to the pathogenesis of disc degeneration. AF cells showed no evidence of a chondrocytic phenotype in either normal or degenerate discs.

                Author and article information

                Journal
                Arthritis Res Ther
                Arthritis Research & Therapy
                BioMed Central (London )
                1478-6354
                1478-6362
                2005
                1 April 2005
                : 7
                : 4
                : R732-R745
                Affiliations
                [1 ]Division of Laboratory and Regenerative Medicine, School of Medicine, University of Manchester, Manchester, UK
                Article
                ar1732
                10.1186/ar1732
                1175026
                15987475
                5e20e32d-acfe-41d5-afe2-c4ae92502838
                Copyright © 2005 Le Maitre et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 October 2004
                : 3 December 2004
                : 16 February 2005
                Categories
                Research Article

                Orthopedics
                Orthopedics

                Comments

                Comment on this article

                Related Documents Log