51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A genetic variant in osteoprotegerin is associated with progression of joint destruction in rheumatoid arthritis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Progression of joint destruction in rheumatoid arthritis (RA) is partly heritably; 45 to 58% of the variance in joint destruction is estimated to be explained by genetic factors. The binding of RANKL (Receptor Activator for Nuclear Factor κ B Ligand) to RANK results in the activation of TRAF6 (tumor necrosis factor (TNF) receptor associated factor-6), and osteoclast formation ultimately leading to enhanced bone resorption. This bone resorption is inhibited by osteoprotegerin (OPG) which prevents RANKL-RANK interactions. The OPG/RANK/RANKL/TRAF6 pathway plays an important role in bone remodeling. Therefore, we investigated whether genetic variants in OPG, RANK, RANKL and TRAF6 are associated with the rate of joint destruction in RA.

          Methods

          1,418 patients with 4,885 X-rays of hands and feet derived from four independent data-sets were studied. In each data-set the relative increase of the progression rate per year in the presence of a genotype was assessed. First, explorative analyses were performed on 600 RA-patients from Leiden. 109 SNPs, tagging OPG, RANK, RANKL and TRAF6, were tested. Single nucleotide polymorphisms (SNPs) significantly associated in phase-1 were genotyped in data-sets from Groningen (Netherlands), Sheffield (United Kingdom) and Lund (Switzerland). Data were summarized in an inverse weighted variance meta-analysis. Bonferonni correction for multiple testing was applied.

          Results

          We found that 33 SNPs were significantly associated with the rate of joint destruction in phase-1. In phase-2, six SNPs in OPG and four SNPs in RANK were associated with progression of joint destruction with P-value <0.05. In the meta-analyses of all four data-sets, RA-patients with the minor allele of OPG-rs1485305 expressed higher rates of joint destruction compared to patients without these risk variants ( P = 2.35x10 −4). This variant was also significant after Bonferroni correction.

          Conclusions

          These results indicate that a genetic variant in OPG is associated with a more severe rate of joint destruction in RA.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand.

          Bone remodelling and bone loss are controlled by a balance between the tumour necrosis factor family molecule osteoprotegerin ligand (OPGL) and its decoy receptor osteoprotegerin (OPG). In addition, OPGL regulates lymph node organogenesis, lymphocyte development and interactions between T cells and dendritic cells in the immune system. The OPGL receptor, RANK, is expressed on chondrocytes, osteoclast precursors and mature osteoclasts. OPGL expression in T cells is induced by antigen receptor engagement, which suggests that activated T cells may influence bone metabolism through OPGL and RANK. Here we report that activated T cells can directly trigger osteoclastogenesis through OPGL. Systemic activation of T cells in vivo leads to an OPGL-mediated increase in osteoclastogenesis and bone loss. In a T-cell-dependent model of rat adjuvant arthritis characterized by severe joint inflammation, bone and cartilage destruction and crippling, blocking of OPGL through osteoprotegerin treatment at the onset of disease prevents bone and cartilage destruction but not inflammation. These results show that both systemic and local T-cell activation can lead to OPGL production and subsequent bone loss, and they provide a novel paradigm for T cells as regulators of bone physiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How to read radiographs according to the Sharp/van der Heijde method.

            This article is a short overview of the development of the Sharp/van der Heijde methods for scoring radiographs of hands and feet in rheumatoid arthritis, in addition to a detailed description on how to use the scoring method.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study

              Summary Background Osteoporosis is diagnosed by the measurement of bone mineral density, which is a highly heritable and multifactorial trait. We aimed to identify genetic loci that are associated with bone mineral density. Methods In this genome-wide association study, we identified the most promising of 314 075 single nucleotide polymorphisms (SNPs) in 2094 women in a UK study. We then tested these SNPs for replication in 6463 people from three other cohorts in western Europe. We also investigated allelic expression in lymphoblast cell lines. We tested the association between the replicated SNPs and osteoporotic fractures with data from two studies. Findings We identified genome-wide evidence for an association between bone mineral density and two SNPs (p<5×10−8). The SNPs were rs4355801, on chromosome 8, near to the TNFRSF11B (osteoprotegerin) gene, and rs3736228, on chromosome 11 in the LRP5 (lipoprotein-receptor-related protein) gene. A non-synonymous SNP in the LRP5 gene was associated with decreased bone mineral density (rs3736228, p=6·3×10−12 for lumbar spine and p=1·9×10−4 for femoral neck) and an increased risk of both osteoporotic fractures (odds ratio [OR] 1·3, 95% CI 1·09–1·52, p=0·002) and osteoporosis (OR 1·3, 1·08–1·63, p=0·008). Three SNPs near the TNFRSF11B gene were associated with decreased bone mineral density (top SNP, rs4355801: p=7·6×10−10 for lumbar spine and p=3·3×10−8 for femoral neck) and increased risk of osteoporosis (OR 1·2, 95% CI 1·01–1·42, p=0·038). For carriers of the risk allele at rs4355801, expression of TNFRSF11B in lymphoblast cell lines was halved (p=3·0×10−6). 1883 (22%) of 8557 people were at least heterozygous for these risk alleles, and these alleles had a cumulative association with bone mineral density (trend p=2·3×10−17). The presence of both risk alleles increased the risk of osteoporotic fractures (OR 1·3, 1·08–1·63, p=0·006) and this effect was independent of bone mineral density. Interpretation Two gene variants of key biological proteins increase the risk of osteoporosis and osteoporotic fracture. The combined effect of these risk alleles on fractures is similar to that of most well-replicated environmental risk factors, and they are present in more than one in five white people, suggesting a potential role in screening. Funding Wellcome Trust, European Commission, NWO Investments, Arthritis Research Campaign, Chronic Disease Research Foundation, Canadian Institutes of Health Research, European Society for Clinical and Economic Aspects of Osteoporosis, Genome Canada, Genome Quebéc, Canada Research Chairs, National Health and Medical Research Council of Australia, and European Union.
                Bookmark

                Author and article information

                Contributors
                Journal
                Arthritis Res Ther
                Arthritis Res. Ther
                Arthritis Research & Therapy
                BioMed Central
                1478-6354
                1478-6362
                2014
                7 May 2014
                : 16
                : 3
                : R108
                Affiliations
                [1 ]Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
                [2 ]Department of Rheumatology, Lund University, Lund, Sweden
                [3 ]Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
                [4 ]Complex Genetics Section, Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
                [5 ]Department of Medical Statistics, Leiden University Medical Center, Leiden, the Netherlands
                [6 ]School of Medicine and Biomedical Sciences, The University of Sheffield, Sheffield, UK
                Article
                ar4558
                10.1186/ar4558
                4060386
                24886600
                5e2af6ab-d948-4361-a4e6-6a0ed600a87d
                Copyright © 2014 Knevel et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 November 2013
                : 15 April 2014
                Categories
                Research Article

                Orthopedics
                Orthopedics

                Comments

                Comment on this article