28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Emergence of Resistance to the Benzimidazole Anthlemintics in Parasitic Nematodes of Livestock Is Characterised by Multiple Independent Hard and Soft Selective Sweeps

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anthelmintic resistance is a major problem for the control of parasitic nematodes of livestock and of growing concern for human parasite control. However, there is little understanding of how resistance arises and spreads or of the “genetic signature” of selection for this group of important pathogens. We have investigated these questions in the system for which anthelmintic resistance is most advanced; benzimidazole resistance in the sheep parasites Haemonchus contortus and Teladorsagia circumcincta. Population genetic analysis with neutral microsatellite markers reveals that T. circumcincta has higher genetic diversity but lower genetic differentiation between farms than H. contortus in the UK. We propose that this is due to epidemiological differences between the two parasites resulting in greater seasonal bottlenecking of H. contortus. There is a remarkably high level of resistance haplotype diversity in both parasites compared with drug resistance studies in other eukaryotic systems. Our analysis suggests a minimum of four independent origins of resistance mutations on just seven farms for H. contortus, and even more for T. circumincta. Both hard and soft selective sweeps have occurred with striking differences between individual farms. The sweeps are generally softer for T. circumcincta than H. contortus, consistent with its higher level of genetic diversity and consequent greater availability of new mutations. We propose a model in which multiple independent resistance mutations recurrently arise and spread by migration to explain the widespread occurrence of resistance in these parasites. Finally, in spite of the complex haplotypic diversity, we show that selection can be detected at the target locus using simple measures of genetic diversity and departures from neutrality. This work has important implications for the application of genome-wide approaches to identify new anthelmintic resistance loci and the likelihood of anthelmintic resistance emerging as selection pressure is increased in human soil-transmitted nematodes by community wide treatment programs.

          Author Summary

          Parasitic nematodes (roundworms) are major causes of disease in both domestic animals and humans. Strategic treatments with anthelmintic drugs have been used to control livestock parasites for several decades resulting in widespread drug resistance. Drug treatments have, until recently, been applied at a relatively low level to control human parasites. However, in recent years community wide treatment programs have been massively increased for the 1–2 billion people infected with roundworms. Hence, for both human and animal health, there is an urgent need to understand how resistance emerges and spreads and how we can detect resistance mutations in this important group of pathogens. In this study, we investigated how drug resistance mutations appear and spread in the two livestock parasites for which resistance is most widespread. We have found that resistance appears repeatedly and frequently in parasite populations, and propose a model to explain the high capacity of these pathogens to develop drug resistance. Our work suggests that anthelmintic resistance is likely to occur when repeated drug treatment is relied upon to control this group of pathogens. Our results also suggest that resistance mutations should be detectable when modern genome-wide approaches are used to scan the genomes of resistant parasites.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Arlequin (version 3.0): An integrated software package for population genetics data analysis

          Arlequin ver 3.0 is a software package integrating several basic and advanced methods for population genetics data analysis, like the computation of standard genetic diversity indices, the estimation of allele and haplotype frequencies, tests of departure from linkage equilibrium, departure from selective neutrality and demographic equilibrium, estimation or parameters from past population expansions, and thorough analyses of population subdivision under the AMOVA framework. Arlequin 3 introduces a completely new graphical interface written in C++, a more robust semantic analysis of input files, and two new methods: a Bayesian estimation of gametic phase from multi-locus genotypes, and an estimation of the parameters of an instantaneous spatial expansion from DNA sequence polymorphism. Arlequin can handle several data types like DNA sequences, microsatellite data, or standard multi-locus genotypes. A Windows version of the software is freely available on http://cmpg.unibe.ch/software/arlequin3.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Soft sweeps: molecular population genetics of adaptation from standing genetic variation.

            A population can adapt to a rapid environmental change or habitat expansion in two ways. It may adapt either through new beneficial mutations that subsequently sweep through the population or by using alleles from the standing genetic variation. We use diffusion theory to calculate the probabilities for selective adaptations and find a large increase in the fixation probability for weak substitutions, if alleles originate from the standing genetic variation. We then determine the parameter regions where each scenario-standing variation vs. new mutations-is more likely. Adaptations from the standing genetic variation are favored if either the selective advantage is weak or the selection coefficient and the mutation rate are both high. Finally, we analyze the probability of "soft sweeps," where multiple copies of the selected allele contribute to a substitution, and discuss the consequences for the footprint of selection on linked neutral variation. We find that soft sweeps with weaker selective footprints are likely under both scenarios if the mutation rate and/or the selection coefficient is high.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A single p450 allele associated with insecticide resistance in Drosophila.

              Insecticide resistance is one of the most widespread genetic changes caused by human activity, but we still understand little about the origins and spread of resistant alleles in global populations of insects. Here, via microarray analysis of all P450s in Drosophila melanogaster, we show that DDT-R, a gene conferring resistance to DDT, is associated with overtranscription of a single cytochrome P450 gene, Cyp6g1. Transgenic analysis of Cyp6g1 shows that overtranscription of this gene alone is both necessary and sufficient for resistance. Resistance and up-regulation in Drosophila populations are associated with a single Cyp6g1 allele that has spread globally. This allele is characterized by the insertion of an Accord transposable element into the 5' end of the Cyp6g1 gene.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                6 February 2015
                February 2015
                : 9
                : 2
                : e0003494
                Affiliations
                [1 ]Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
                [2 ]School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
                [3 ]Moredun Research Institute, Pentlands Science Park, Midlothian, United Kingdom
                University of Pennsylvania, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JSG ER. Performed the experiments: ER FW CB YB. Analyzed the data: ER. Wrote the paper: ER JSG. Collected samples: CB YB PJS FJ. Supervised and critically read the manuscript: JSG AT PJS.

                Article
                PNTD-D-14-01616
                10.1371/journal.pntd.0003494
                4319741
                25658086
                5e4c4dd6-c653-4107-9ef1-35277e63b4d6
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 17 September 2014
                : 22 December 2014
                Page count
                Figures: 4, Tables: 1, Pages: 24
                Funding
                The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding support (Grant number RGPIN/371529-2209) as well as the NSERC-CREATE Host Pathogen Interactions (HPI) graduate training program at the University of Calgary. FJ was funded from core Moredun money. ER and FW were funded by Biotechnology and Biological Sciences Research Council (BBRSC) Combating Endemic Diseases Grant (Grant no.: BB/E018505/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All sequence files are available from the GenBank database (accession numbers: KF483600-KF483657).

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article