407
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Guide to Enterotypes across the Human Body: Meta-Analysis of Microbial Community Structures in Human Microbiome Datasets

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent analyses of human-associated bacterial diversity have categorized individuals into ‘enterotypes’ or clusters based on the abundances of key bacterial genera in the gut microbiota. There is a lack of consensus, however, on the analytical basis for enterotypes and on the interpretation of these results. We tested how the following factors influenced the detection of enterotypes: clustering methodology, distance metrics, OTU-picking approaches, sequencing depth, data type (whole genome shotgun (WGS) vs.16S rRNA gene sequence data), and 16S rRNA region. We included 16S rRNA gene sequences from the Human Microbiome Project (HMP) and from 16 additional studies and WGS sequences from the HMP and MetaHIT. In most body sites, we observed smooth abundance gradients of key genera without discrete clustering of samples. Some body habitats displayed bimodal ( e.g., gut) or multimodal ( e.g., vagina) distributions of sample abundances, but not all clustering methods and workflows accurately highlight such clusters. Because identifying enterotypes in datasets depends not only on the structure of the data but is also sensitive to the methods applied to identifying clustering strength, we recommend that multiple approaches be used and compared when testing for enterotypes.

          Author Summary

          Recent work has suggested that individuals can be classified into ‘enterotypes’ based on the abundance of key bacterial taxa in gut microbial communities. However, the generality of enterotypes across populations, and the existence of similar cluster types for other body sites, remains to be evaluated. We combined the Human Microbiome Project 16S rRNA gene sequence data and metagenomes with similar published data to assess the existence of enterotypes across body sites. We found that rather than forming enterotypes (note we use this term for clusters in all body sites), most samples fell into gradients based on taxonomic abundances of bacteria such as Bacteroides, although in some body sites there is a bi/multi modal distribution of samples across gradients. Furthermore, many of the methods used in the analysis ( e.g., distance metrics and clustering approaches) affected the likelihood of identifying enterotypes in particular body habitats. We recommend that multiple approaches be used and compared when testing for enterotypes.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: not found

          Experimental and analytical tools for studying the human microbiome.

          The human microbiome substantially affects many aspects of human physiology, including metabolism, drug interactions and numerous diseases. This realization, coupled with ever-improving nucleotide sequencing technology, has precipitated the collection of diverse data sets that profile the microbiome. In the past 2 years, studies have begun to include sufficient numbers of subjects to provide the power to associate these microbiome features with clinical states using advanced algorithms, increasing the use of microbiome studies both individually and collectively. Here we discuss tools and strategies for microbiome studies, from primer selection to bioinformatics analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Target Region Selection Is a Critical Determinant of Community Fingerprints Generated by 16S Pyrosequencing

            Pyrosequencing of 16S rRNA genes allows for in-depth characterization of complex microbial communities. Although it is known that primer selection can influence the profile of a community generated by sequencing, the extent and severity of this bias on deep-sequencing methodologies is not well elucidated. We tested the hypothesis that the hypervariable region targeted for sequencing and primer degeneracy play important roles in influencing the composition of 16S pyrotag communities. Subgingival plaque from deep sites of current smokers with chronic periodontitis was analyzed using Sanger sequencing and pyrosequencing using 4 primer pairs. Greater numbers of species were detected by pyrosequencing than by Sanger sequencing. Rare taxa constituted nearly 6% of each pyrotag community and less than 1% of the Sanger sequencing community. However, the different target regions selected for pyrosequencing did not demonstrate a significant difference in the number of rare and abundant taxa detected. The genera Prevotella, Fusobacterium, Streptococcus, Granulicatella, Bacteroides, Porphyromonas and Treponema were abundant when the V1–V3 region was targeted, while Streptococcus, Treponema, Prevotella, Eubacterium, Porphyromonas, Campylobacer and Enterococcus predominated in the community generated by V4–V6 primers, and the most numerous genera in the V7–V9 community were Veillonella, Streptococcus, Eubacterium, Enterococcus, Treponema, Catonella and Selenomonas. Targeting the V4–V6 region failed to detect the genus Fusobacterium, while the taxa Selenomonas, TM7 and Mycoplasma were not detected by the V7–V9 primer pairs. The communities generated by degenerate and non-degenerate primers did not demonstrate significant differences. Averaging the community fingerprints generated by V1–V3 and V7–V9 primers providesd results similar to Sanger sequencing, while allowing a significantly greater depth of coverage than is possible with Sanger sequencing. It is therefore important to use primers targeted to these two regions of the 16S rRNA gene in all deep-sequencing efforts to obtain representational characterization of complex microbial communities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation.

              Studies in mice indicate that the gut microbiota promotes energy harvest and storage from components of the diet when these components are plentiful. Here we examine how the microbiota shapes host metabolic and physiologic adaptations to periods of nutrient deprivation. Germ-free (GF) mice and mice who had received a gut microbiota transplant from conventionally raised donors were compared in the fed and fasted states by using functional genomic, biochemical, and physiologic assays. A 24-h fast produces a marked change in gut microbial ecology. Short-chain fatty acids generated from microbial fermentation of available glycans are maintained at higher levels compared with GF controls. During fasting, a microbiota-dependent, Ppar alpha-regulated increase in hepatic ketogenesis occurs, and myocardial metabolism is directed to ketone body utilization. Analyses of heart rate, hydraulic work, and output, mitochondrial morphology, number, and respiration, plus ketone body, fatty acid, and glucose oxidation in isolated perfused working hearts from GF and colonized animals (combined with in vivo assessments of myocardial physiology) revealed that the fasted GF heart is able to sustain its performance by increasing glucose utilization, but heart weight, measured echocardiographically or as wet mass and normalized to tibial length or lean body weight, is significantly reduced in both fasted and fed mice. This myocardial-mass phenotype is completely reversed in GF mice by consumption of a ketogenic diet. Together, these results illustrate benefits provided by the gut microbiota during periods of nutrient deprivation, and emphasize the importance of further exploring the relationship between gut microbes and cardiovascular health.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                January 2013
                January 2013
                10 January 2013
                : 9
                : 1
                : e1002863
                Affiliations
                [1 ]Department of Microbiology, Cornell University, Ithaca, New York, United States of America
                [2 ]Department of Computer Science, University of Colorado, Boulder, Colorado, United States of America
                [3 ]Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
                [4 ]Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
                [5 ]Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
                [6 ]Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, United States of America
                University of California Davis, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: OK DK AG LW NS RK CH REL. Performed the experiments: OK DK AG LW NS RK CH REL. Analyzed the data: OK DK AG LW NS RK CH REL. Contributed reagents/materials/analysis tools: OK DK AG LW NS RK CH REL. Wrote the paper: OK DK AG NS RK CH REL.

                Article
                PCOMPBIOL-D-12-00370
                10.1371/journal.pcbi.1002863
                3542080
                23326225
                5e4f5da5-f771-45da-bce9-cd8d6e1fa109
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 March 2012
                : 10 November 2012
                Page count
                Pages: 16
                Funding
                This research was supported by the HMP DACC (HG4866), The Hartwell Foundation (REL), the Arnold and Mabel Beckman Foundation (REL), the David and Lucile Packard Foundation (REL), the National Science Foundation (DBI-1053486 to CH), the National Institutes of Health (HG4872 to RK and 1R01HG005969 to CH), Danone (PLF-5972-GD to CH), the Crohns and Colitis Foundation of America (RK), and the Howard Hughes Medical Institute (RK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Microbiology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article