Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Occurrence of human e nterovirus in tropical fish and shellfish and their relationship with fecal indicator bacteria

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim:

          Human enteroviruses in fish and shellfish are a health concern worldwide. Human infections occur due to the consumption of raw or insufficiently cooked fish or shellfish. The objective of this study was to determine the occurrence of human enteric viruses belonging to Enterovirus (EV) group in seafood in Mumbai and to correlate their occurrence with the bacterial indicators of fecal contamination.

          Materials and Methods:

          Samples of fresh fish and shellfish collected from fish landing centers and retail fish markets were analyzed by virus concentration, nucleic acid extraction, and reverse transcription-polymerase chain reaction (RT-PCR). Bacterial indicators of fecal contamination were estimated by the most probable number technique. The relationship between the presence of virus and fecal indicators was determined by statistical analysis.

          Results:

          A total of 89 samples comprising of fish, shrimps, oysters, clams, and mussels were screened in this study. EV was detected in 32 (35.95%) samples, and all the virus-positive samples belonged to bivalve molluscan group. None of the finfish and crustacean shellfish samples was positive for the enteric viruses. Clams were found to be the most contaminated with 48.4% of the samples being positive for EV. The prevalence of enteric viruses in seafood samples showed a strong positive correlation with the bacteriological indicators of fecal contamination, suggesting that fecal coliform bacteria are good indicators of EVs in tropical seafood.

          Conclusion:

          The presence of EVs in seafood is a public health hazard. Increasing level of coastal water contamination from anthropogenic sources is the primary reason for the contamination of seafood with EVs. Continuous monitoring of coastal waters and seafood for enteric viruses will help to ensure the safety of fish and shellfish for human consumption.

          Related collections

          Most cited references 26

          • Record: found
          • Abstract: found
          • Article: not found

          Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools.

          Waterborne enteric viruses threaten both human and animal health. These pathogens are host specific and cause a wide range of diseases and symptoms in humans or other animals. While considerable research has documented the risk of enteric viruses to human health from contact with contaminated water, the current bacterial indicator-based methods for evaluation of water quality are often ineffectual proxies for pathogenic viruses. Additionally, relatively little work has specifically investigated the risk of waterborne viruses to animal health, and this risk currently is not addressed by routine water quality assessments. Nonetheless, because of their host specificity, enteric viruses can fulfill a unique role both for assessing health risks and as measures of contamination source in a watershed, yet the use of animal, as well as human, host-specific viruses in determining sources of fecal pollution has received little attention. With improved molecular detection assays, viruses from key host groups can be targeted directly using PCR amplification or hybridization with a high level of sensitivity and specificity. A multispecies viral analysis would provide needed information for controlling pollution by source, determining human health risks based on assessments of human virus loading and exposure, and determining potential risks to production animal health and could indicate the potential for the presence of other zoonotic pathogens. While there is a need to better understand the prevalence and environmental distribution of nonhuman enteric viruses, the development of improved methods for specific and sensitive detection will facilitate the use of these microbes for library-independent source tracking and water quality assessment tools.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tissue tropism, pathology and pathogenesis of enterovirus infection.

            Enteroviruses are very common and cause infections with a diverse array of clinical features. Enteroviruses are most frequently considered by practising pathologists in cases of aseptic meningitis, encephalitis, myocarditis and disseminated infections in neonates and infants. Congenital infections have been reported and transplacental transmission is thought to occur. Although skin biopsies during hand, foot and mouth disease are infrequently obtained, characteristic dermatopathological findings can be seen. Enteroviruses have been implicated in lower respiratory tract infections. This review highlights histopathological features of enterovirus infection and discusses diagnostic modalities for formalin-fixed paraffin-embedded tissues and their associated pitfalls. Immunohistochemistry can detect enterovirus antigen within cells of affected tissues; however, assays can be non-specific and detect other viruses. Molecular methods are increasingly relied upon but, due to the high frequency of asymptomatic enteroviral infections, clinical-pathological correlation is needed to determine significance. Of note, diagnostic assays on central nervous system or cardiac tissues from immunocompetent patients with prolonged disease courses are most often negative. Histopathological, immunohistochemical and molecular studies performed on clinical specimens also provide insight into enteroviral tissue tropism and pathogenesis. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three-year study to assess human enteric viruses in shellfish.

              The main pathogenic enteric viruses able to persist in the environment, such as hepatitis A virus (HAV), Norwalk-like virus (NLV), enterovirus (EV), rotavirus (RV), and astrovirus (AV), were detected by reverse transcription-PCR and hybridization in shellfish during a 3-year study. Oyster samples (n = 108), occasionally containing bacteria, were less frequently contaminated, showing positivity for AV (17%), NLV (23%), EV (19%), and RV (27%), whereas mussel samples, collected in areas routinely impacted by human sewage, were more highly contaminated: AV (50%), HAV (13%), NLV (35%), EV (45%), and RV (52%). Sequences obtained from HAV and NLV amplicons showed a great variety of strains, especially for NLV (strains close to Mexico, Snow Mountain Agent, or Norwalk virus). Viral contamination was mainly observed during winter months, although there were some seasonal differences among the viruses. This first study of virus detection over a fairly long period of time suggests that routine analysis of shellfish by a molecular technique is feasible.
                Bookmark

                Author and article information

                Affiliations
                Department of Post-Harvest Technology, Quality Control Laboratory, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra, India
                Author notes
                Corresponding author: Binaya Bhusan Nayak, e-mail: nayakbb@ 123456cife.edu.in Co-authors: ML: manjusha@ 123456cife.edu.in , OD: oishi.phtpa505@ 123456cife.edu.in , SK: sanathkumar@ 123456cife.edu.in ,
                Journal
                Vet World
                Vet World
                Veterinary World
                Veterinary World (India )
                0972-8988
                2231-0916
                September 2018
                18 September 2018
                : 11
                : 9
                : 1285-1290
                10.14202/vetworld.2018.1285-1290
                6200563
                Copyright: © Lekshmi, et al.

                Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Categories
                Research Article

                Comments

                Comment on this article