36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Kalman estimator- and general linear model-based on-line brain activation mapping by near-infrared spectroscopy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Near-infrared spectroscopy (NIRS) is a non-invasive neuroimaging technique that recently has been developed to measure the changes of cerebral blood oxygenation associated with brain activities. To date, for functional brain mapping applications, there is no standard on-line method for analysing NIRS data.

          Methods

          In this paper, a novel on-line NIRS data analysis framework taking advantages of both the general linear model (GLM) and the Kalman estimator is devised. The Kalman estimator is used to update the GLM coefficients recursively, and one critical coefficient regarding brain activities is then passed to a t-statistical test. The t-statistical test result is used to update a topographic brain activation map. Meanwhile, a set of high-pass filters is plugged into the GLM to prevent very low-frequency noises, and an autoregressive (AR) model is used to prevent the temporal correlation caused by physiological noises in NIRS time series. A set of data recorded in finger tapping experiments is studied using the proposed framework.

          Results

          The obtained results suggest that the method can effectively track the task related brain activation areas, and prevent the noise distortion in the estimation while the experiment is running. Thereby, the potential of the proposed method for real-time NIRS-based brain imaging was demonstrated.

          Conclusions

          This paper presents a novel on-line approach for analysing NIRS data for functional brain mapping applications. This approach demonstrates the potential of a real-time-updating topographic brain activation map.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain.

          Near-infrared spectroscopy (NIRS) is a noninvasive neuroimaging tool for studying evoked hemodynamic changes within the brain. By this technique, changes in the optical absorption of light are recorded over time and are used to estimate the functionally evoked changes in cerebral oxyhemoglobin and deoxyhemoglobin concentrations that result from local cerebral vascular and oxygen metabolic effects during brain activity. Over the past three decades this technology has continued to grow, and today NIRS studies have found many niche applications in the fields of psychology, physiology, and cerebral pathology. The growing popularity of this technique is in part associated with a lower cost and increased portability of NIRS equipment when compared with other imaging modalities, such as functional magnetic resonance imaging and positron emission tomography. With this increasing number of applications, new techniques for the processing, analysis, and interpretation of NIRS data are continually being developed. We review some of the time-series and functional analysis techniques that are currently used in NIRS studies, we describe the practical implementation of various signal processing techniques for removing physiological, instrumental, and motion-artifact noise from optical data, and we discuss the unique aspects of NIRS analysis in comparison with other brain imaging modalities. These methods are described within the context of the MATLAB-based graphical user interface program, HomER, which we have developed and distributed to facilitate the processing of optical functional brain data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI.

            The registration of functional brain data to the common brain space offers great advantages for inter-modal data integration and sharing. However, this is difficult to achieve in functional near-infrared spectroscopy (fNIRS) because fNIRS data are primary obtained from the head surface and lack structural information of the measured brain. Therefore, in our previous articles, we presented a method for probabilistic registration of fNIRS data to the standard Montreal Neurological Institute (MNI) template through international 10-20 system without using the subject's magnetic resonance image (MRI). In the current study, we demonstrate our method with a new statistical model to facilitate group studies and provide information on different components of variability. We adopt an analysis similar to the single-factor one-way classification analysis of variance based on random effects model to examine the variability involved in our improvised method of probabilistic registration of fNIRS data. We tested this method by registering head surface data of twelve subjects to seventeen reference MRI data sets and found that the standard deviation in probabilistic registration thus performed for given head surface points is approximately within the range of 4.7 to 7.0 mm. This means that, if the spatial registration error is within an acceptable tolerance limit, it is possible to perform multi-subject fNIRS analysis to make inference at the population level and to provide information on positional variability in the population, even when subjects' MRIs are not available. In essence, the current method enables the multi-subject fNIRS data to be presented in the MNI space with clear description of associated positional variability. Such data presentation on a common platform, will not only strengthen the validity of the population analysis of fNIRS studies, but will also facilitate both intra- and inter-modal data sharing among the neuroimaging community.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model.

              Using a newly developed perfused rat brain model, we examined direct effects of each change in cerebral blood flow (CBF) and oxygen metabolic rate on cerebral hemoglobin oxygenation to interpret near-infrared spectroscopy signals. Changes in CBF and total hemoglobin (tHb) were in parallel, although tHb showed no change when changes in CBF were small (< or =10%). Increasing CBF caused an increase in oxygenated hemoglobin (HbO(2)) and a decrease in deoxygenated hemoglobin (deoxy-Hb). Decreasing CBF was accompanied by a decrease in HbO(2), whereas changes in direction of deoxy-Hb were various. Cerebral blood congestion caused increases in HbO(2), deoxy-Hb, and tHb. Administration of pentylenetetrazole without increasing the flow rate caused increases in HbO(2) and tHb with a decrease in deoxy-Hb. There were no significant differences in venous oxygen saturation before vs. during seizure. These results suggest that, in activation studies with near-infrared spectroscopy, HbO(2) is the most sensitive indicator of changes in CBF, and the direction of changes in deoxy-Hb is determined by the degree of changes in venous blood oxygenation and volume.
                Bookmark

                Author and article information

                Journal
                Biomed Eng Online
                BioMedical Engineering OnLine
                BioMed Central
                1475-925X
                2010
                8 December 2010
                : 9
                : 82
                Affiliations
                [1 ]Department of Cogno-Mechatronics Engineering, Pusan National University; 30 Jangjeon-dong, Geumjeong-gu, Busan609-735, Korea
                [2 ]Department of Cogno-Mechatronics Engineering and School of Mechanical Engineering, Pusan National University; 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735, Korea
                [3 ]Department of Electrical and Computer Engineering, The National University of Singapore, Singapore 117576
                Article
                1475-925X-9-82
                10.1186/1475-925X-9-82
                3020171
                21138595
                5e7aa5a5-bc8a-40c8-b893-deb6363bb9cd
                Copyright ©2010 Hu et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 July 2010
                : 8 December 2010
                Categories
                Research

                Biomedical engineering
                Biomedical engineering

                Comments

                Comment on this article