77
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Loss of a-Type Lamin Expression Compromises Nuclear Envelope Integrity Leading to Muscular Dystrophy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The nuclear lamina is a protein meshwork lining the nucleoplasmic face of the inner nuclear membrane and represents an important determinant of interphase nuclear architecture. Its major components are the A- and B-type lamins. Whereas B-type lamins are found in all mammalian cells, A-type lamin expression is developmentally regulated. In the mouse, A-type lamins do not appear until midway through embryonic development, suggesting that these proteins may be involved in the regulation of terminal differentiation. Here we show that mice lacking A-type lamins develop to term with no overt abnormalities. However, their postnatal growth is severely retarded and is characterized by the appearance of muscular dystrophy. This phenotype is associated with ultrastructural perturbations to the nuclear envelope. These include the mislocalization of emerin, an inner nuclear membrane protein, defects in which are implicated in Emery-Dreifuss muscular dystrophy (EDMD), one of the three major X-linked dystrophies. Mice lacking the A-type lamins exhibit tissue-specific alterations to their nuclear envelope integrity and emerin distribution. In skeletal and cardiac muscles, this is manifest as a dystrophic condition related to EDMD.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Nuclear Membrane Dynamics and Reassembly in Living Cells: Targeting of an Inner Nuclear Membrane Protein in Interphase and Mitosis

          The mechanisms of localization and retention of membrane proteins in the inner nuclear membrane and the fate of this membrane system during mitosis were studied in living cells using the inner nuclear membrane protein, lamin B receptor, fused to green fluorescent protein (LBR–GFP). Photobleaching techniques revealed the majority of LBR–GFP to be completely immobilized in the nuclear envelope (NE) of interphase cells, suggesting a tight binding to heterochromatin and/or lamins. A subpopulation of LBR–GFP within ER membranes, by contrast, was entirely mobile and diffused rapidly and freely (D = 0.41 ± 0.1 μm2/s). High resolution confocal time-lapse imaging in mitotic cells revealed LBR–GFP redistributing into the interconnected ER membrane system in prometaphase, exhibiting the same high mobility and diffusion constant as observed in interphase ER membranes. LBR–GFP rapidly diffused across the cell within the membrane network defined by the ER, suggesting the integrity of the ER was maintained in mitosis, with little or no fragmentation and vesiculation. At the end of mitosis, nuclear membrane reformation coincided with immobilization of LBR–GFP in ER elements at contact sites with chromatin. LBR–GFP–containing ER membranes then wrapped around chromatin over the course of 2–3 min, quickly and efficiently compartmentalizing nuclear material. Expansion of the NE followed over the course of 30–80 min. Thus, selective changes in lateral mobility of LBR–GFP within the ER/NE membrane system form the basis for its localization to the inner nuclear membrane during interphase. Such changes, rather than vesiculation mechanisms, also underlie the redistribution of this molecule during NE disassembly and reformation in mitosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A structural scaffolding of intermediate filaments in health and disease.

            The cytoplasm of animal cells is structured by a scaffolding composed of actin microfilaments, microtubules, and intermediate filaments. Intermediate filaments, so named because their 10-nanometer diameter is intermediate between that of microfilaments (6 nanometers) and microtubules (23 nanometers), assemble into an anastomosed network within the cytoplasm. In combination with a recently identified class of cross-linking proteins that mediate interactions between intermediate filaments and the other cytoskeletal networks, evidence is reviewed here that intermediate filaments provide a flexible intracellular scaffolding whose function is to structure cytoplasm and to resist stresses externally applied to the cell. Mutations that weaken this structural framework increase the risk of cell rupture and cause a variety of human disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study.

              In mouse embryos, acquisition of the nuclear lamin polypeptides A/C varies according to developmental stage and tissue type. In order to determine the precise time points and cell types in which lamin A/C are first observed, we have used two monoclonal antibodies in immunofluorescence studies of different tissues of developing mouse embryos and of young mice. One antibody (mAB346) is specific for lamins A and C, while the other (PKB8) detects lamins A, B and C. Dividing uterine development into three phases--germ layer formation, organogenesis and tissue differentiation--our results show that lamin A/C expression in the embryo proper is not observed until the third phase of development. Lamin A/C first appears at embryonic day 12 in muscle cells of the trunk, head and the appendages. Three days later it is also seen in cells of the epidermis where its appearance coincides with the time of stratification. In the simple epithelial of lung, liver, kidney and intestine, as well as in heart and brain, lamins A/C do not appear until well after birth. Embryonal carcinoma (EC) cells express lamin B but not lamin A/C. Lamin A/C expression is noted in some EC cells after they are induced to differentiate and in several differentiated teratocarcinoma cell lines. Our results suggest that commitment of a cell to a particular pathway of differentiation (assayed by cell-type-specific expression of intermediate filament proteins) usually occurs prior to the time that lamin A/C can be detected. Thus lamin A/C expression may serve as a limit on the plasticity of cells for further developmental events.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                29 November 1999
                : 147
                : 5
                : 913-920
                Affiliations
                [a ]Advanced BioScience Laboratories–Basic Research Program, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, Maryland 21702
                [b ]Hoffmann-LaRoche, Nutley, New Jersey 07110
                [c ]Science Applications International Corporation, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, Maryland 21702
                [d ]Department of Cell Biology and Anatomy, University of Calgary, Faculty of Medicine, Calgary, Canada T2N 4N1
                Article
                9909101
                10.1083/jcb.147.5.913
                2169344
                10579712
                5e800131-e335-4c86-8f7f-72e2b3cbc7fb
                © 1999 The Rockefeller University Press
                History
                : 23 September 1999
                : 18 October 1999
                : 19 October 1999
                Categories
                Brief Report

                Cell biology
                emerin,muscular dystrophy,nuclear envelope,lamins
                Cell biology
                emerin, muscular dystrophy, nuclear envelope, lamins

                Comments

                Comment on this article