14
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      CytoSorb purification in critically ill SARS-CoV-2 patients

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective:

          To describe the experience with CytoSorb treatment in patients with refractory acute respiratory distress syndrome (ARDS) following SARS-CoV-2 infection.

          Methods:

          Retrospective observational study on 15 patients treated in a University Hospital.

          Results:

          All patients were male, with a mean age of 55 ± 14 years; eight patients (53%) were on venovenous extracorporeal membrane oxygenation (VV ECMO) due to refractory ARDS and all (100%) under mechanical ventilation at the time of CytoSorb use. We observed reduction in the level of C reactive protein (−52%, p = 0.002), total bilirubin (−46%, p = 0.03), direct bilirubin (−50%, p = 0.02), and D-dimers (−39%, p = 0.04) during CytoSorb treatment and a trend toward reduction in lactate dehydrogenase (−20%, p = 0.2), creatine phosphokinase (−38%, p = 0.1), and fibrinogen (−15%, p = 0.07). Eight patients died (53%) and seven (47%) were discharged from the ICU, of which five had recovery of the native lung function and two were successfully bridged to lung transplantation on VV ECMO support. No difference between survivors and non-survivors was present at baseline. Patients received three CytoSorb cycles on average: mean duration of CytoSorb cycle was 17 h 21 min, but premature circuit clotting despite appropriate level of systemic anticoagulation was frequently observed.

          Conclusions:

          CytoSorb treatment was effective in improving several laboratory parameters and inflammation in our experience and no treatment-related adverse effects were recorded. In the light of the unique pathophysiology of SARS-CoV-2 infection, CytoSorb treatment is extremely promising, since it might both reduce inflammation and activation of coagulation.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: found

          COVID-19 cytokine storm: the interplay between inflammation and coagulation

          Coronavirus disease 2019 (COVID-19) has spread rapidly throughout the globe. It is associated with significant mortality, particularly in at-risk groups with poor prognostic features at hospital admission. 1 The spectrum of disease is broad but among hospitalised patients with COVID-19, pneumonia, sepsis, respiratory failure, and acute respiratory distress syndrome (ARDS) are frequently encountered complications. 1 The pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced ARDS has similarities to that of severe community-acquired pneumonia caused by other viruses or bacteria.2, 3 The overproduction of early response proinflammatory cytokines (tumour necrosis factor [TNF], IL-6, and IL-1β) results in what has been described as a cytokine storm, leading to an increased risk of vascular hyperpermeability, multiorgan failure, and eventually death when the high cytokine concentrations are unabated over time. 4 Therefore, therapeutic strategies under investigation are targeting the overactive cytokine response with anticytokine therapies or immunomodulators, but this must be balanced with maintaining an adequate inflammatory response for pathogen clearance. Activation of coagulation pathways during the immune response to infection results in overproduction of proinflammatory cytokines leading to multiorgan injury. Although the main function of thrombin is to promote clot formation by activating platelets and by converting fibrinogen to fibrin, 5 thrombin also exerts multiple cellular effects and can further augment inflammation via proteinase-activated receptors (PARs), principally PAR-1. 5 Thrombin generation is tightly controlled by negative feedback loops and physiological anticoagulants, such as antithrombin III, tissue factor pathway inhibitor, and the protein C system. 5 During inflammation, all three of these control mechanisms can be impaired, with reduced anticoagulant concentrations due to reduced production and increasing consumption. This defective procoagulant–anticoagulant balance predisposes to the development of microthrombosis, disseminated intravascular coagulation, and multiorgan failure—evidenced in severe COVID-19 pneumonia with raised d-dimer concentrations being a poor prognostic feature and disseminated intravascular coagulation common in non-survivors.1, 6 The finding of increased d-dimer levels in patients with COVID-19 has prompted questions regarding co-existence of venous thromboembolism exacerbating ventilation–perfusion mismatch, and some studies have shown that pulmonary emboli are prevalent. 7 However, due to increased risk of bleeding and despondence related to previous negative trials of endogenous anticoagulants in sepsis, clinicians might be reluctant to offer it to all. Outside of the prevention and management of venous thromboembolism, it is clear that effects of coagulation activation go beyond clotting and crosstalk between coagulation and inflammation can significantly affect disease progression and lead to poor outcome. Prophylactic dose low molecular weight heparin (LMWH) is recommended for hospitalised patients with COVID-19 to prevent venous thromboembolism and treatment dose LMWH is contemplated for those with significantly raised d-dimer concentrations due to concerns of thrombi in the pulmonary circulation; but LMWH also has anti-inflammatory properties that might be beneficial in COVID-19. In this context, it is therefore paramount to look at the role of PAR antagonists and other coagulation protease inhibitors. PAR-1 is the main thrombin receptor and mediates thrombin-induced platelet aggregation as well as the interplay between coagulation, inflammatory, and fibrotic responses, all of which are important aspects of the pathophysiology of fibroproliferative lung disease, 5 such as seen in COVID-19. Although less likely to have an effect on venous thromboembolism, PAR-1 antagonists developed as antiplatelet drugs for the treatment of cardiovascular disease, 8 might potentially attenuate the deleterious effects associated with activation of the coagulation cascade and thrombin formation. A clinically approved PAR-1 antagonist was shown to reduce levels of proinflammatory cytokines, neutrophilic lung inflammation, and alveolar leak during bacterial pneumonia and lipopolysaccharide-induced lung injury in murine models.9, 10 Moreover, the role of PAR-1 in host immunity to viruses has been investigated: in one study, PAR-1 was protective against myocarditis from coxackie virus and decreased influenza A viral loads in murine lungs, 11 while in another study, activation of PAR-1 following influenza A challenge was associated with deleterious inflammation and worsened survival, 12 suggesting the initial PAR-1 activation is required for host control of virus load but if left unabated, PAR-1-mediated inflammation results in reduced survival. The half-life of vorapaxar, might be considered too prolonged in the context of managing acute illness, especially without a known reversal agent for its antiplatelet effect and the associated bleeding risk. However, it is important to note that in clinical trials of vorapaxar, most participants received both aspirin and a thienopyridine at enrolment, 8 and PAR-1 antagonists (eg, RWJ58259), which never progressed to clinical trials, have short half-lives and could be revisited. Antithrombin and antifactor Xa direct oral anticoagulants are well established in the prevention and management of venous thromboembolism, and since thrombin is the main activator of PAR-1, and coagulation factor Xa can induce production of proinflammatory cytokines via activation of PAR-2 and PAR-1, 5 these drugs might be promising in ameliorating disease progression and severity of COVID-19. Bleeding risk will always be a concern, but in this procoagulant state the benefits might outweigh the risk and reversal drugs for the anticoagulant effects of these inhibitors now exist. Targeting thrombin, coagulation factor Xa or PAR-1, might therefore be an attractive approach to reduce SARS-CoV-2 microthrombosis, lung injury, and associated poor outcomes. © 2020 NASA Worldview, Earth Observing System Data and Information System (EOSDIS)/Science Photo Library 2020 Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
            • Record: found
            • Abstract: found
            • Article: found

            Management of COVID-19 Respiratory Distress

              • Record: found
              • Abstract: found
              • Article: not found

              Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the Extracorporeal Life Support Organization registry

              Background Multiple major health organisations recommend the use of extracorporeal membrane oxygenation (ECMO) support for COVID-19-related acute hypoxaemic respiratory failure. However, initial reports of ECMO use in patients with COVID-19 described very high mortality and there have been no large, international cohort studies of ECMO for COVID-19 reported to date. Methods We used data from the Extracorporeal Life Support Organization (ELSO) Registry to characterise the epidemiology, hospital course, and outcomes of patients aged 16 years or older with confirmed COVID-19 who had ECMO support initiated between Jan 16 and May 1, 2020, at 213 hospitals in 36 countries. The primary outcome was in-hospital death in a time-to-event analysis assessed at 90 days after ECMO initiation. We applied a multivariable Cox model to examine whether patient and hospital factors were associated with in-hospital mortality. Findings Data for 1035 patients with COVID-19 who received ECMO support were included in this study. Of these, 67 (6%) remained hospitalised, 311 (30%) were discharged home or to an acute rehabilitation centre, 101 (10%) were discharged to a long-term acute care centre or unspecified location, 176 (17%) were discharged to another hospital, and 380 (37%) died. The estimated cumulative incidence of in-hospital mortality 90 days after the initiation of ECMO was 37·4% (95% CI 34·4–40·4). Mortality was 39% (380 of 968) in patients with a final disposition of death or hospital discharge. The use of ECMO for circulatory support was independently associated with higher in-hospital mortality (hazard ratio 1·89, 95% CI 1·20–2·97). In the subset of patients with COVID-19 receiving respiratory (venovenous) ECMO and characterised as having acute respiratory distress syndrome, the estimated cumulative incidence of in-hospital mortality 90 days after the initiation of ECMO was 38·0% (95% CI 34·6–41·5). Interpretation In patients with COVID-19 who received ECMO, both estimated mortality 90 days after ECMO and mortality in those with a final disposition of death or discharge were less than 40%. These data from 213 hospitals worldwide provide a generalisable estimate of ECMO mortality in the setting of COVID-19. Funding None.

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                The International Journal of Artificial Organs
                Int J Artif Organs
                SAGE Publications
                0391-3988
                1724-6040
                February 2022
                October 26 2021
                February 2022
                : 45
                : 2
                : 216-220
                Affiliations
                [1 ]Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
                Article
                10.1177/03913988211052572
                34702109
                5ea8ea04-170e-44ff-819b-cc81840981d7
                © 2022

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article

                Related Documents Log