8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal stem cell-derived exosomal miR-223 regulates neuronal cell apoptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypoxia limits the survival and function of neurons in the development of Alzheimer’s diseases. Exosome-dependent intercellular communication is an emerging signaling mechanism involved in tissue repair and regeneration; however, the effect and underlying mechanism of mesenchymal stem cell-derived exosomes in regulating neuronal cell apoptosis have not been determined. Here, we showed that the establishment of an AD cell model was accompanied by increased HIF-1α expression and cell apoptosis, impaired cell migration, and decreased miR-223. MSC-derived exosomes were internalized by the AD cell coculture model in a time-dependent manner, resulting in reduced cell apoptosis, enhanced cell migration and increased miR-223, and these effects were reversed by KC7F2, a hypoxic inhibitor. Furthermore, MSC-derived exosomal miR-223 inhibited the apoptosis of neurons in vitro by targeting PTEN, thus activating the PI3K/Akt pathway. In addition, exosomes isolated from the serum of AD patients promoted cell apoptosis. In short, our study showed that MSC-derived exosomal miR-223 protected neuronal cells from apoptosis through the PTEN-PI3K/Akt pathway and provided a potential therapeutic approach for AD.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Hypothalamic stem cells control aging speed partly through exosomal miRNAs

          SUMMARY Hypothalamic control of aging was recently proposed, but the responsible mechanisms still remain unclear. Here, following the observation that aging of mice started with a substantial loss of hypothalamic stem/progenitor cells that co-express Sox2 and Bmi1, we developed several mouse models with ablation of these hypothalamic cells, each of them consistently displaying an acceleration in aging-like physiological changes or shortening in lifespan. Conversely, aging retardation and lifespan extension were achieved in mid-aged mice when locally implanted with healthy hypothalamic stem/progenitor cells that were genetically engineered to survive from aging-related hypothalamic inflammatory microenvironment. Mechanistically, hypothalamic stem/progenitor cells greatly contributed to exosomal miRNAs in the cerebrospinal fluid which declined over aging, while central treatment with healthy hypothalamic stem/progenitor cells-secreted exosomes led to slowdown of aging. In conclusion, aging speed is controlled significantly by hypothalamic stem cells partially through release of exosomal miRNAs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype

            Background How exosomal microRNAs (miRNAs) derived from macrophages contribute to the development of drug resistance in the context of the hypoxic tumor microenvironment in epithelial ovarian cancer (EOC) remains poorly understood. Methods The miRNA levels were detected by qRT-PCR. Protein levels of HIF-1α, CD163 and PTEN-PI3K/AKT pathway were assessed by Western blot (WB) and Immunohistochemistry (IHC). Exosomes were isolated, and then confirmed by Transmission electron microscopy (TEM), Nanoparticle Tracking Analysis (NTA) and WB. Internalization of macrophages-secreted exosomes in EOC cells was detected by Confocal microscope. Subsequently, Dual-luciferase reporter assay verified PTEN was the target of miR-223. Gain- and loss-of-function experiments, rescue experiments, and SKOV3 xenograft models were performed to uncover the underlying mechanisms of miR-223 and PTEN-PI3K/AKT pathway, as well as the exosomal miR-223 in inducing multidrug resistance in vitro and in vivo. Results Here, we showed hypoxic EOC cells triggered macrophages recruitment and induced macrophages into a tumor-associated macrophage (TAM)-like phenotype; exosomes derived from hypoxic macrophages enhanced the malignant phenotype of EOC cells, miR-223 was enriched in exosomes released from macrophages under hypoxia, which could be transferred to the co-cultivated EOC cells, accompanied by enhanced drug resistant of EOC cells. Besides, results from a functional assay revealed that exosomal miR-223 derived from macrophages promoted the drug resistance of EOC cells via the PTEN-PI3K/AKT pathway both in vivo and in vitro. Furthermore, patients with high HIF-1a expression had statistically higher CD163+ cell infiltration and intertumoral levels of miR-223. Finally, circulating exosomal miR-223 levels were closely related to the recurrence of EOC. Conclusions These data indicate a unique role of exosomal miR-223 in the cross-talk between macrophages and EOC cells in chemotherapy resistance, through a novel exosomal miR-223/PTEN-PI3K/AKT signaling pathway. Electronic supplementary material The online version of this article (10.1186/s13046-019-1095-1) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intervertebral disc repair by allogeneic mesenchymal bone marrow cells: a randomized controlled trial.

              Degenerative disc disease often causes severe low-back pain, a public health problem with huge economic and life quality impact. Chronic cases often require surgery, which may lead to biomechanical problems and accelerated degeneration of the adjacent segments. Autologous mesenchymal stromal cells (MSC) treatments have shown feasibility, safety and strong indications of clinical efficacy. We present here a randomized, controlled trial using allogeneic MSC, which are logistically more convenient than autologous cells.
                Bookmark

                Author and article information

                Contributors
                zxl2517@163.com
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                27 April 2020
                27 April 2020
                April 2020
                : 11
                : 4
                : 290
                Affiliations
                [1 ]ISNI 0000 0004 1758 4655, GRID grid.470928.0, Department of Central Laboratory, , The Fourth Affiliated Hospital of Jiangsu University, ; Zhenjiang, Jiangsu 212001 China
                [2 ]ISNI 0000 0001 0743 511X, GRID grid.440785.a, Jiangsu University, ; Zhenjiang, Jiangsu 212003 China
                [3 ]GRID grid.452247.2, Department of Neurology, , The Affiliated Hospital of Jiangsu University, ; Zhenjiang, Jiangsu 212001 China
                [4 ]GRID grid.452247.2, Department of Radiology, , The Affiliated Hospital of Jiangsu University, ; Zhenjiang, Jiangsu 212001 China
                Article
                2490
                10.1038/s41419-020-2490-4
                7184756
                32341353
                5ec31a65-fd6e-4b2b-95b6-7d5d481e3e28
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 4 December 2019
                : 9 April 2020
                : 10 April 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 81672913/81871343
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Cell biology
                cell death in the nervous system,mesenchymal stem cells
                Cell biology
                cell death in the nervous system, mesenchymal stem cells

                Comments

                Comment on this article