73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tau in physiology and pathology

      ,
      Nature Reviews Neuroscience
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tau is a microtubule-associated protein that has a role in stabilizing neuronal microtubules and thus in promoting axonal outgrowth. Structurally, tau is a natively unfolded protein, is highly soluble and shows little tendency for aggregation. However, tau aggregation is characteristic of several neurodegenerative diseases known as tauopathies. The mechanisms underlying tau pathology and tau-mediated neurodegeneration are debated, but considerable progress has been made in the field of tau research in recent years, including the identification of new physiological roles for tau in the brain. Here, we review the expression, post-translational modifications and functions of tau in physiology and in pathophysiology.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          Primary age-related tauopathy (PART): a common pathology associated with human aging.

          We recommend a new term, "primary age-related tauopathy" (PART), to describe a pathology that is commonly observed in the brains of aged individuals. Many autopsy studies have reported brains with neurofibrillary tangles (NFTs) that are indistinguishable from those of Alzheimer's disease (AD), in the absence of amyloid (Aβ) plaques. For these "NFT+/Aβ-" brains, for which formal criteria for AD neuropathologic changes are not met, the NFTs are mostly restricted to structures in the medial temporal lobe, basal forebrain, brainstem, and olfactory areas (bulb and cortex). Symptoms in persons with PART usually range from normal to amnestic cognitive changes, with only a minority exhibiting profound impairment. Because cognitive impairment is often mild, existing clinicopathologic designations, such as "tangle-only dementia" and "tangle-predominant senile dementia", are imprecise and not appropriate for most subjects. PART is almost universally detectable at autopsy among elderly individuals, yet this pathological process cannot be specifically identified pre-mortem at the present time. Improved biomarkers and tau imaging may enable diagnosis of PART in clinical settings in the future. Indeed, recent studies have identified a common biomarker profile consisting of temporal lobe atrophy and tauopathy without evidence of Aβ accumulation. For both researchers and clinicians, a revised nomenclature will raise awareness of this extremely common pathologic change while providing a conceptual foundation for future studies. Prior reports that have elucidated features of the pathologic entity we refer to as PART are discussed, and working neuropathological diagnostic criteria are proposed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease.

            To assess the relationship between dementia, neuronal loss, and neuropathological findings in Alzheimer's disease (AD), we counted the number of neurons, senile plaques, and neurofibrillary tangles in a high-order association cortex. We studied the superior temporal sulcus of 34 individuals with AD and 17 nondemented control subjects, using statistically unbiased, stereological counting techniques. The number of superior temporal sulcus neurons in nondemented control subjects was stable across the sixth to ninth decades. In AD, more than 50% of the neurons were lost. Both neuronal loss and neurofibrillary tangles increased in parallel with the duration and severity of illness, but the amount of neuronal loss exceeded by manyfold the amount of neurofibrillary tangles accumulated. In contrast to the correlation between neurofibrillary tangles and neuronal loss, the number of senile plaques and the percentage of the superior temporal sulcus that was covered by Abeta (amyloid burden) were not related to neuronal loss, number of neurofibrillary tangles, or duration of disease. Neither the amount nor the rate of neuronal loss in the superior temporal sulcus in AD correlated with apolipoprotein E genotype. These data suggest that neuronal loss in association areas such as the superior temporal sulcus contributes directly to cognitive impairment in AD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Myelination of the nervous system: mechanisms and functions.

              Myelination of axons in the nervous system of vertebrates enables fast, saltatory impulse propagation, one of the best-understood concepts in neurophysiology. However, it took a long while to recognize the mechanistic complexity both of myelination by oligodendrocytes and Schwann cells and of their cellular interactions. In this review, we highlight recent advances in our understanding of myelin biogenesis, its lifelong plasticity, and the reciprocal interactions of myelinating glia with the axons they ensheath. In the central nervous system, myelination is also stimulated by axonal activity and astrocytes, whereas myelin clearance involves microglia/macrophages. Once myelinated, the long-term integrity of axons depends on glial supply of metabolites and neurotrophic factors. The relevance of this axoglial symbiosis is illustrated in normal brain aging and human myelin diseases, which can be studied in corresponding mouse models. Thus, myelinating cells serve a key role in preserving the connectivity and functions of a healthy nervous system.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Neuroscience
                Nat Rev Neurosci
                Springer Science and Business Media LLC
                1471-003X
                1471-0048
                January 2016
                December 3 2015
                January 2016
                : 17
                : 1
                : 22-35
                Article
                10.1038/nrn.2015.1
                26631930
                5ec4fdb9-ccce-4d10-b23f-41af60f3f168
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article