32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review on Flexural Mode of Graphene: Lattice Dynamics, Thermal Conduction, Thermal Expansion, Elasticity, and Nanomechanical Resonance

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Single-layer graphene is so flexible that its flexural mode (also called the ZA mode, bending mode, or out-of-plane transverse acoustic mode) is important for its thermal and mechanical properties. Accordingly, this review focuses on exploring the relationship between the flexural mode and thermal and mechanical properties of graphene. We first survey the lattice dynamic properties of the flexural mode, where the rigid translational and rotational invariances play a crucial role. After that, we outline contributions from the flexural mode in four different physical properties or phenomena of graphene -- its thermal conductivity, thermal expansion, Young's modulus, and nanomechanical resonance. We explain how graphene's superior thermal conductivity is mainly due to its three acoustic phonon modes at room temperature, including the flexural mode. Its coefficient of thermal expansion is negative in a wide temperature range resulting from the particular vibration morphology of the flexural mode. We then describe how the Young's modulus of graphene can be extracted from its thermal fluctuations, which are dominated by the flexural mode. Finally, we discuss the effects of the flexural mode on graphene nanomechanical resonators, while also discussing how the essential properties of the resonators, including mass sensitivity and quality factor, can be enhanced.

          Related collections

          Most cited references130

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The rise of graphene

          Graphene is a rapidly rising star on the horizon of materials science and condensed matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed matter physics, where quantum relativistic phenomena, some of which are unobservable in high energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Two-Dimensional Gas of Massless Dirac Fermions in Graphene

            Electronic properties of materials are commonly described by quasiparticles that behave as non-relativistic electrons with a finite mass and obey the Schroedinger equation. Here we report a condensed matter system where electron transport is essentially governed by the Dirac equation and charge carriers mimic relativistic particles with zero mass and an effective "speed of light" c* ~10^6m/s. Our studies of graphene - a single atomic layer of carbon - have revealed a variety of unusual phenomena characteristic of two-dimensional (2D) Dirac fermions. In particular, we have observed that a) the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; b) graphene's conductivity never falls below a minimum value corresponding to the conductance quantum e^2/h, even when carrier concentrations tend to zero; c) the cyclotron mass m of massless carriers with energy E in graphene is described by equation E =mc*^2; and d) Shubnikov-de Haas oscillations in graphene exhibit a phase shift of pi due to Berry's phase.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Two Dimensional Atomic Crystals

              We report free-standing atomic crystals that are strictly 2D and can be viewed as individual atomic planes pulled out of bulk crystals or as unrolled single-wall nanotubes. By using micromechanical cleavage, we have prepared and studied a variety of 2D crystals, including single layers of boron nitride, graphite, several dichalcogenides and complex oxides. These atomically-thin sheets (essentially gigantic 2D molecules unprotected from the immediate environment) are stable under ambient conditions, exhibit high crystal quality and are continuous on a macroscopic scale.
                Bookmark

                Author and article information

                Journal
                2014-08-06
                2015-01-29
                Article
                10.1088/0953-8984/27/8/083001
                1408.1450
                5ec52266-d3ad-4553-a192-6721f12396ba

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                J. Phys.: Condens. Matter 27 (2015) 083001 (24pp)
                Journal of Physics: Condensed Matter, topical review, published
                cond-mat.mtrl-sci cond-mat.mes-hall

                Condensed matter,Nanophysics
                Condensed matter, Nanophysics

                Comments

                Comment on this article