13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Voltage-controlled quantum light from an atomically thin semiconductor

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although semiconductor defects can often be detrimental to device performance, they are also responsible for the breadth of functionality exhibited by modern optoelectronic devices. Artificially engineered defects (so-called quantum dots) or naturally occurring defects in solids are currently being investigated for applications ranging from quantum information science and optoelectronics to high-resolution metrology. In parallel, the quantum confinement exhibited by atomically thin materials (semi-metals, semiconductors and insulators) has ushered in an era of flatland optoelectronics whose full potential is still being articulated. In this Letter we demonstrate the possibility of leveraging the atomically thin semiconductor tungsten diselenide (WSe2) as a host for quantum dot-like defects. We report that this previously unexplored solid-state quantum emitter in WSe2 generates single photons with emission properties that can be controlled via the application of external d.c. electric and magnetic fields. These new optically active quantum dots exhibit excited-state lifetimes on the order of 1 ns and remarkably large excitonic g-factors of 10. It is anticipated that WSe2 quantum dots will provide a novel platform for integrated solid-state quantum photonics and quantum information processing, as well as a rich condensed-matter physics playground with which to explore the coupling of quantum dots and atomically thin semiconductors.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Emerging photoluminescence in monolayer MoS2.

          Novel physical phenomena can emerge in low-dimensional nanomaterials. Bulk MoS(2), a prototypical metal dichalcogenide, is an indirect bandgap semiconductor with negligible photoluminescence. When the MoS(2) crystal is thinned to monolayer, however, a strong photoluminescence emerges, indicating an indirect to direct bandgap transition in this d-electron system. This observation shows that quantum confinement in layered d-electron materials like MoS(2) provides new opportunities for engineering the electronic structure of matter at the nanoscale.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Atomically thin p-n junctions with van der Waals heterointerfaces.

            Semiconductor p-n junctions are essential building blocks for electronic and optoelectronic devices. In conventional p-n junctions, regions depleted of free charge carriers form on either side of the junction, generating built-in potentials associated with uncompensated dopant atoms. Carrier transport across the junction occurs by diffusion and drift processes influenced by the spatial extent of this depletion region. With the advent of atomically thin van der Waals materials and their heterostructures, it is now possible to realize a p-n junction at the ultimate thickness limit. Van der Waals junctions composed of p- and n-type semiconductors--each just one unit cell thick--are predicted to exhibit completely different charge transport characteristics than bulk heterojunctions. Here, we report the characterization of the electronic and optoelectronic properties of atomically thin p-n heterojunctions fabricated using van der Waals assembly of transition-metal dichalcogenides. We observe gate-tunable diode-like current rectification and a photovoltaic response across the p-n interface. We find that the tunnelling-assisted interlayer recombination of the majority carriers is responsible for the tunability of the electronic and optoelectronic processes. Sandwiching an atomic p-n junction between graphene layers enhances the collection of the photoexcited carriers. The atomically scaled van der Waals p-n heterostructures presented here constitute the ultimate functional unit for nanoscale electronic and optoelectronic devices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultrasensitive solution-cast quantum dot photodetectors.

              Solution-processed electronic and optoelectronic devices offer low cost, large device area, physical flexibility and convenient materials integration compared to conventional epitaxially grown, lattice-matched, crystalline semiconductor devices. Although the electronic or optoelectronic performance of these solution-processed devices is typically inferior to that of those fabricated by conventional routes, this can be tolerated for some applications in view of the other benefits. Here we report the fabrication of solution-processed infrared photodetectors that are superior in their normalized detectivity (D*, the figure of merit for detector sensitivity) to the best epitaxially grown devices operating at room temperature. We produced the devices in a single solution-processing step, overcoating a prefabricated planar electrode array with an unpatterned layer of PbS colloidal quantum dot nanocrystals. The devices showed large photoconductive gains with responsivities greater than 10(3) A W(-1). The best devices exhibited a normalized detectivity D* of 1.8 x 10(13) jones (1 jones = 1 cm Hz(1/2) W(-1)) at 1.3 microm at room temperature: today's highest performance infrared photodetectors are photovoltaic devices made from epitaxially grown InGaAs that exhibit peak D* in the 10(12) jones range at room temperature, whereas the previous record for D* from a photoconductive detector lies at 10(11) jones. The tailored selection of absorption onset energy through the quantum size effect, combined with deliberate engineering of the sequence of nanoparticle fusing and surface trap functionalization, underlie the superior performance achieved in this readily fabricated family of devices.
                Bookmark

                Author and article information

                Journal
                Nature Nanotechnology
                Nature Nanotech
                Springer Science and Business Media LLC
                1748-3387
                1748-3395
                June 2015
                May 4 2015
                June 2015
                : 10
                : 6
                : 507-511
                Article
                10.1038/nnano.2015.79
                25938569
                5ecd0d25-c5e1-4103-b8e6-94aada850cb0
                © 2015

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article