28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Haptic Categorical Perception of Shape

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Categorization and categorical perception have been extensively studied, mainly in vision and audition. In the haptic domain, our ability to categorize objects has also been demonstrated in earlier studies. Here we show for the first time that categorical perception also occurs in haptic shape perception. We generated a continuum of complex shapes by morphing between two volumetric objects. Using similarity ratings and multidimensional scaling we ensured that participants could haptically discriminate all objects equally. Next, we performed classification and discrimination tasks. After a short training with the two shape categories, both tasks revealed categorical perception effects. Training leads to between-category expansion resulting in higher discriminability of physical differences between pairs of stimuli straddling the category boundary. Thus, even brief training can alter haptic representations of shape. This suggests that the weights attached to various haptic shape features can be changed dynamically in response to top-down information about class membership.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Neural substrates of phonemic perception.

          The temporal lobe in the left hemisphere has long been implicated in the perception of speech sounds. Little is known, however, regarding the specific function of different temporal regions in the analysis of the speech signal. Here we show that an area extending along the left middle and anterior superior temporal sulcus (STS) is more responsive to familiar consonant-vowel syllables during an auditory discrimination task than to comparably complex auditory patterns that cannot be associated with learned phonemic categories. In contrast, areas in the dorsal superior temporal gyrus bilaterally, closer to primary auditory cortex, are activated to the same extent by the phonemic and nonphonemic sounds. Thus, the left middle/anterior STS appears to play a role in phonemic perception. It may represent an intermediate stage of processing in a functional pathway linking areas in the bilateral dorsal superior temporal gyrus, presumably involved in the analysis of physical features of speech and other complex non-speech sounds, to areas in the left anterior STS and middle temporal gyrus that are engaged in higher-level linguistic processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Perceived shape similarity among unfamiliar objects and the organization of the human object vision pathway.

            Humans rely heavily on shape similarity among objects for object categorization and identification. Studies using functional magnetic resonance imaging (fMRI) have shown that a large region in human occipitotemporal cortex processes the shape of meaningful as well as unfamiliar objects. Here, we investigate whether the functional organization of this region as measured with fMRI is related to perceived shape similarity. We found that unfamiliar object classes that are rated as having a similar shape were associated with a very similar response pattern distributed across object-selective cortex, whereas object classes that were rated as being very different in shape were associated with a more different response pattern. Human observers, as well as object-selective cortex, were very sensitive to differences in shape features of the objects such as straight versus curved versus "spiky" edges, more so than to differences in overall shape envelope. Response patterns in retinotopic areas V1, V2, and V4 were not found to be related to perceived shape. The functional organization in area V3 was partially related to perceived shape but without a stronger sensitivity for shape features relative to overall shape envelope. Thus, for unfamiliar objects, the organization of human object-selective cortex is strongly related to perceived shape, and this shape-based organization emerges gradually throughout the object vision pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Categorical effects in the perception of faces.

              These studies suggest categorical perception effects may be much more general than has commonly been believed and can occur in apparently similar ways at dramatically different levels of processing. To test the nature of individual face representations, a linear continuum of "morphed" faces was generated between individual exemplars of familiar faces. In separate categorization, discrimination and "better-likeness" tasks, subjects viewed pairs of faces from these continua. Subjects discriminate most accurately when face-pairs straddle apparent category boundaries; thus individual faces are perceived categorically. A high correlation is found between the familiarity of a face-pair and the magnitude of the categorization effect. Categorical perception therefore is not limited to low-level perceptual continua, but can occur at higher levels and may be acquired through experience as well.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                10 August 2012
                : 7
                : 8
                : e43062
                Affiliations
                [1 ]Max Planck Institute for Biological Cybernetics, Tübingen, Germany
                [2 ]University of Giessen, Giessen, Germany
                [3 ]Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
                Queen Mary University of London, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: NG IB RF SW. Performed the experiments: NG SW. Analyzed the data: NG. Contributed reagents/materials/analysis tools: NG RF IB. Wrote the paper: NG IB RF.

                Article
                PONE-D-12-05189
                10.1371/journal.pone.0043062
                3416786
                22900089
                5ed01d06-17f4-431c-93df-27fbda2d4553
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 February 2012
                : 17 July 2012
                Page count
                Pages: 7
                Funding
                This research was supported by a PhD stipend from the Max Planck Society. Part of this research was conducted as part of the research program of the Bernstein Center for Computational Neuroscience, Tübingen, funded by the German Federal Ministry of Education and Research (BMBF; FKZ: 01GQ1002). Part of this research was also supported by the WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-2008-000-10008-0). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Neurological System
                Sensory Physiology
                Social and Behavioral Sciences
                Psychology
                Behavior
                Human Performance
                Cognitive Psychology
                Learning
                Memory
                Experimental Psychology
                Psychophysics
                Sensory Perception

                Uncategorized
                Uncategorized

                Comments

                Comment on this article