59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Roles of NRF2 in Modulating Cellular Iron Homeostasis

      review-article
      1 , 1
      Antioxidants & Redox Signaling
      Mary Ann Liebert, Inc., publishers
      NRF2, iron, oxygen, heme, cancer, ferroptosis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Significance: Iron and oxygen are intimately linked: iron is an essential nutrient utilized as a cofactor in enzymes for oxygen transport, oxidative phosphorylation, and metabolite oxidation. However, excess labile iron facilitates the formation of oxygen-derived free radicals capable of damaging biomolecules. Therefore, biological utilization of iron is a tightly regulated process. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor, which can respond to oxidative and electrophilic stress, regulates several genes involved in iron metabolism.

          Recent Advances: The bulk of NRF2 transcription factor research has focused on its roles in detoxification and cancer prevention. Recent works have identified that several genes involved in heme synthesis, hemoglobin catabolism, iron storage, and iron export are under the control of NRF2. Constitutive NRF2 activation and subsequent deregulation of iron metabolism have been implicated in cancer development: NRF2-mediated upregulation of the iron storage protein ferritin or heme oxygenase 1 can lead to enhanced proliferation and therapy resistance. Of note, NRF2 activation and alterations to iron signaling in cancers may hinder efforts to induce the iron-dependent cell death process known as ferroptosis.

          Critical Issues: Despite growing recognition of NRF2 as a modulator of iron signaling, exactly how iron metabolism is altered due to NRF2 activation in normal physiology and in pathologic conditions remains imprecise; moreover, the roles of NRF2-mediated iron signaling changes in disease progression are only beginning to be uncovered.

          Future Directions: Further studies are necessary to connect NRF2 activation with physiological and pathological changes to iron signaling and oxidative stress.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy

          Autophagy, the process by which proteins and organelles are sequestered in double-membrane structures called autophagosomes and delivered to lysosomes for degradation, is critical in diseases such as cancer and neurodegeneration 1,2 . Much of our understanding of this process has emerged from analysis of bulk cytoplasmic autophagy, but our understanding of how specific cargo including organelles, proteins, or intracellular pathogens are targeted for selective autophagy is limited 3 . We employed quantitative proteomics to identify a cohort of novel and known autophagosome-enriched proteins, including cargo receptors. Like known cargo receptors, NCOA4 was highly enriched in autophagosomes, and associated with ATG8 proteins that recruit cargo-receptor complexes into autophagosomes. Unbiased identification of NCOA4-associated proteins revealed ferritin heavy and light chains, components of an iron-filled cage structure that protects cells from reactive iron species 4 but is degraded via autophagy to release iron 5,6 through an unknown mechanism. We found that delivery of ferritin to lysosomes required NCOA4, and an inability of NCOA4-deficient cells to degrade ferritin leads to decreased bioavailable intracellular iron. This work identifies NCOA4 as a selective cargo receptor for autophagic turnover of ferritin (ferritinophagy) critical for iron homeostasis and provides a resource for further dissection of autophagosomal cargo-receptor connectivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Iron and cancer: more ore to be mined.

            Iron is an essential nutrient that facilitates cell proliferation and growth. However, iron also has the capacity to engage in redox cycling and free radical formation. Therefore, iron can contribute to both tumour initiation and tumour growth; recent work has also shown that iron has a role in the tumour microenvironment and in metastasis. Pathways of iron acquisition, efflux, storage and regulation are all perturbed in cancer, suggesting that reprogramming of iron metabolism is a central aspect of tumour cell survival. Signalling through hypoxia-inducible factor (HIF) and WNT pathways may contribute to altered iron metabolism in cancer. Targeting iron metabolic pathways may provide new tools for cancer prognosis and therapy.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              LXXIII.—Oxidation of tartaric acid in presence of iron

                Bookmark

                Author and article information

                Journal
                Antioxid Redox Signal
                Antioxid. Redox Signal
                ars
                Antioxidants & Redox Signaling
                Mary Ann Liebert, Inc., publishers (140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA )
                1523-0864
                1557-7716
                10 December 2018
                24 October 2018
                24 October 2018
                : 29
                : 17
                : 1756-1773
                Affiliations
                [1]Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona , Tucson, Arizona.
                Author notes
                [*]Address correspondence to: Dr. Aikseng Ooi, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721 ooi@ 123456pharmacy.arizona.edu
                Article
                10.1089/ars.2017.7176
                10.1089/ars.2017.7176
                6208163
                28793787
                5ee6ab91-c1e0-44b2-8f76-726a69e85d51
                © Michael John Kerins and Aikseng Ooi, 2017; Published by Mary Ann Liebert, Inc.

                This Open Access article is distributed under the terms of the Creative Commons License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 May 2017
                : 02 August 2017
                : 03 August 2017
                Page count
                Figures: 6, Tables: 1, Equations: 1, References: 176, Pages: 18
                Categories
                Forum Review Articles NRF-2 (Ed. Donna Zhang)

                nrf2,iron,oxygen,heme,cancer,ferroptosis
                nrf2, iron, oxygen, heme, cancer, ferroptosis

                Comments

                Comment on this article