7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dissecting the Pharmacodynamics and Pharmacokinetics of MSCs to Overcome Limitations in Their Clinical Translation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, mesenchymal stromal stem cells (MSCs) have been proposed as therapeutic agents because of their promising preclinical features and good safety profile. However, their introduction into clinical practice has been associated with a suboptimal therapeutic profile. In this review, we address the biodistribution of MSCs in preclinical studies with a focus on the current understanding of the pharmacodynamics (PD) and pharmacokinetics (PK) of MSCs as key aspects to overcome unsatisfactory clinical benefits of MSC application. Beginning with evidence of MSC biodistribution and highlighting PK and PD factors, a new PK-PD model is also proposed. According to this theory, MSCs and their released factors are key players in PK, and the efficacy biomarkers are considered relevant for PD in more predictive preclinical investigations. Accounting for the PK-PD relationship in MSC translational research and proposing new models combined with better biodistribution studies could allow realization of the promise of more robust MSC clinical translation.

          Graphical Abstract

          Abstract

          The number of clinical trials based on MSCs that are publicly available exceeds 800; however, data regarding MSC pharmacodynamics (PD), pharmacokinetics (PK), and biodistribution are still scarce. For this reason, we dissected the PD and PK properties of MSCs, presenting factors that may influence MSC-based PK studies to then conceive a new PK-PD model that would support better and more robust MSC clinical translation.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells.

          Adult bone-marrow-derived mesenchymal stem cells are immunosuppressive and prolong the rejection of mismatched skin grafts in animals. We transplanted haploidentical mesenchymal stem cells in a patient with severe treatment-resistant grade IV acute graft-versus-host disease of the gut and liver. Clinical response was striking. The patient is now well after 1 year. We postulate that mesenchymal stem cells have a potent immunosuppressive effect in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views.

            Mesenchymal stem cells or multipotent stromal cells (MSCs) isolated from the bone marrow of adult organisms were initially characterized as plastic adherent, fibroblastoid cells with the capacity to generate heterotopic osseous tissue when transplanted in vivo. In recent years, MSCs or MSC-like cells have been shown to reside within the connective tissue of most organs, and their surface phenotype has been well described. A large number of reports have also indicated that the cells possess the capacity to transdifferentiate into epithelial cells and lineages derived from the neuroectoderm. The broad developmental plasticity of MSCs was originally thought to contribute to their demonstrated efficacy in a wide variety of experimental animal models of disease as well as in human clinical trials. However, new findings suggest that the ability of MSCs to alter the tissue microenvironment via secretion of soluble factors may contribute more significantly than their capacity for transdifferentiation in tissue repair. Herein, we critically evaluate the literature describing the plasticity of MSCs and offer insight into how the molecular and functional heterogeneity of this cell population, which reflects the complexity of marrow stroma as an organ system, may confound interpretation of their transdifferentiation potential. Additionally, we argue that this heterogeneity also provides a basis for the broad therapeutic efficacy of MSCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives.

              Mesenchymal stem cells (MSCs) are one of a few stem cell types to be applied in clinical practice as therapeutic agents for immunomodulation and ischemic tissue repair. In addition to their multipotent differentiation potential, a strong paracrine capacity has been proposed as the principal mechanism that contributes to tissue repair. Apart from cytokine/chemokine secretion, MSCs also display a strong capacity for mitochondrial transfer and microvesicle (exosomes) secretion in response to injury with subsequent promotion of tissue regeneration. These unique properties of MSCs make them an invaluable cell type to repair damaged tissues/organs. Although MSCs offer great promise in the treatment of degenerative diseases and inflammatory disorders, there are still many challenges to overcome prior to their widespread clinical application. Particularly, their in-depth paracrine mechanisms remain a matter for debate and exploration. This review will highlight the discovery of the paracrine mechanism of MSCs, regulation of the paracrine biology of MSCs, important paracrine factors of MSCs in modulation of tissue repair, exosome and mitochondrial transfer for tissue repair, and the future perspective for MSC-based therapy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Ther Methods Clin Dev
                Mol Ther Methods Clin Dev
                Molecular Therapy. Methods & Clinical Development
                American Society of Gene & Cell Therapy
                2329-0501
                17 May 2019
                13 September 2019
                17 May 2019
                : 14
                : 1-15
                Affiliations
                [1 ]Department of Pharmacokinetics, Biochemistry and Metabolism, Chiesi Farmaceutici S.p.A, 43122 Parma, Italy
                [2 ]Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
                Author notes
                []Corresponding author: Michela Salvadori, MS, Department of Pharmacokinetics, Biochemistry and Metabolism, Chiesi Farmaceutici S.p.A, Largo Belloli 11a, 43122 Parma, Italy. m.salvadori@ 123456chiesi.com
                [∗∗ ]Corresponding author: Massimo Dominici, MD, Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences of Children and Adults, University Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41100 Modena, Italy. massimo.dominici@ 123456unimore.it
                Article
                S2329-0501(19)30048-8
                10.1016/j.omtm.2019.05.004
                6581775
                31236426
                5ef59681-1dd9-4911-be61-1aa47c27cc1e
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Article

                mscs,mesenchymal cells,mesenchymal stromal cells,pharmacodynamics,pharmacokinetics,pk-pd model,clinical translation,biodistribution,stem cell therapy,lung regeneration

                Comments

                Comment on this article