66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      School Closure and Mitigation of Pandemic (H1N1) 2009, Hong Kong

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In Hong Kong, kindergartens and primary schools were closed when local transmission of pandemic (H1N1) 2009 was identified. Secondary schools closed for summer vacation shortly afterwards. By fitting a model of reporting and transmission to case data, we estimated that transmission was reduced ≈25% when secondary schools closed.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Estimating the impact of school closure on influenza transmission from Sentinel data.

          The threat posed by the highly pathogenic H5N1 influenza virus requires public health authorities to prepare for a human pandemic. Although pre-pandemic vaccines and antiviral drugs might significantly reduce illness rates, their stockpiling is too expensive to be practical for many countries. Consequently, alternative control strategies, based on non-pharmaceutical interventions, are a potentially attractive policy option. School closure is the measure most often considered. The high social and economic costs of closing schools for months make it an expensive and therefore controversial policy, and the current absence of quantitative data on the role of schools during influenza epidemics means there is little consensus on the probable effectiveness of school closure in reducing the impact of a pandemic. Here, from the joint analysis of surveillance data and holiday timing in France, we quantify the role of schools in influenza epidemics and predict the effect of school closure during a pandemic. We show that holidays lead to a 20-29% reduction in the rate at which influenza is transmitted to children, but that they have no detectable effect on the contact patterns of adults. Holidays prevent 16-18% of seasonal influenza cases (18-21% in children). By extrapolation, we find that prolonged school closure during a pandemic might reduce the cumulative number of cases by 13-17% (18-23% in children) and peak attack rates by up to 39-45% (47-52% in children). The impact of school closure would be reduced if it proved difficult to maintain low contact rates among children for a prolonged period.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Severe respiratory disease concurrent with the circulation of H1N1 influenza.

            In the spring of 2009, an outbreak of severe pneumonia was reported in conjunction with the concurrent isolation of a novel swine-origin influenza A (H1N1) virus (S-OIV), widely known as swine flu, in Mexico. Influenza A (H1N1) subtype viruses have rarely predominated since the 1957 pandemic. The analysis of epidemic pneumonia in the absence of routine diagnostic tests can provide information about risk factors for severe disease from this virus and prospects for its control. From March 24 to April 29, 2009, a total of 2155 cases of severe pneumonia, involving 821 hospitalizations and 100 deaths, were reported to the Mexican Ministry of Health. During this period, of the 8817 nasopharyngeal specimens that were submitted to the National Epidemiological Reference Laboratory, 2582 were positive for S-OIV. We compared the age distribution of patients who were reported to have severe pneumonia with that during recent influenza epidemics to document an age shift in rates of death and illness. During the study period, 87% of deaths and 71% of cases of severe pneumonia involved patients between the ages of 5 and 59 years, as compared with average rates of 17% and 32%, respectively, in that age group during the referent periods. Features of this epidemic were similar to those of past influenza pandemics in that circulation of the new influenza virus was associated with an off-season wave of disease affecting a younger population. During the early phase of this influenza pandemic, there was a sudden increase in the rate of severe pneumonia and a shift in the age distribution of patients with such illness, which was reminiscent of past pandemics and suggested relative protection for persons who were exposed to H1N1 strains during childhood before the 1957 pandemic. If resources or vaccine supplies are limited, these findings suggest a rationale for focusing prevention efforts on younger populations. 2009 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonpharmaceutical interventions implemented by US cities during the 1918-1919 influenza pandemic.

              A critical question in pandemic influenza planning is the role nonpharmaceutical interventions might play in delaying the temporal effects of a pandemic, reducing the overall and peak attack rate, and reducing the number of cumulative deaths. Such measures could potentially provide valuable time for pandemic-strain vaccine and antiviral medication production and distribution. Optimally, appropriate implementation of nonpharmaceutical interventions would decrease the burden on health care services and critical infrastructure. To examine the implementation of nonpharmaceutical interventions for epidemic mitigation in 43 cities in the continental United States from September 8, 1918, through February 22, 1919, and to determine whether city-to-city variation in mortality was associated with the timing, duration, and combination of nonpharmaceutical interventions; altered population susceptibility associated with prior pandemic waves; age and sex distribution; and population size and density. Historical archival research, and statistical and epidemiological analyses. Nonpharmaceutical interventions were grouped into 3 major categories: school closure; cancellation of public gatherings; and isolation and quarantine. Weekly excess death rate (EDR); time from the activation of nonpharmaceutical interventions to the first peak EDR; the first peak weekly EDR; and cumulative EDR during the entire 24-week study period. There were 115,340 excess pneumonia and influenza deaths (EDR, 500/100,000 population) in the 43 cities during the 24 weeks analyzed. Every city adopted at least 1 of the 3 major categories of nonpharmaceutical interventions. School closure and public gathering bans activated concurrently represented the most common combination implemented in 34 cities (79%); this combination had a median duration of 4 weeks (range, 1-10 weeks) and was significantly associated with reductions in weekly EDR. The cities that implemented nonpharmaceutical interventions earlier had greater delays in reaching peak mortality (Spearman r = -0.74, P < .001), lower peak mortality rates (Spearman r = 0.31, P = .02), and lower total mortality (Spearman r = 0.37, P = .008). There was a statistically significant association between increased duration of nonpharmaceutical interventions and a reduced total mortality burden (Spearman r = -0.39, P = .005). These findings demonstrate a strong association between early, sustained, and layered application of nonpharmaceutical interventions and mitigating the consequences of the 1918-1919 influenza pandemic in the United States. In planning for future severe influenza pandemics, nonpharmaceutical interventions should be considered for inclusion as companion measures to developing effective vaccines and medications for prophylaxis and treatment.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                Emerging Infect. Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                March 2010
                : 16
                : 3
                : 538-541
                Affiliations
                [1]The University of Hong Kong School of Public Health, Hong Kong Special Administrative Region, People’s Republic of China (J.T. Wu, B.J. Cowling, E.H.Y. Lau, D.K.M. Ip, L.-M. Ho, S. Riley)
                [2]Centre for Health Protection, Hong Kong (T. Tsang, S.-K. Chuang)
                [3]Hospital Authority, Hong Kong (P.-Y. Leung, S.-V. Lo, S.-H Liu); and Food and Health Bureau, Hong Kong (S.-V. Lo)
                Author notes
                Address for correspondence: Benjamin J. Cowling, School of Public Health, The University of Hong Kong, Units 624-7, Cyberport 3, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China; email: bcowling@ 123456hku.hk
                Article
                09-1216
                10.3201/eid1603.091216
                3206396
                20202441
                5efad47e-8215-4023-a7ce-4aabc3d0df44
                History
                Categories
                Dispatch
                Dispatch

                Infectious disease & Microbiology
                pandemic,dispatch,influenza,viruses,mitigation,h1n1,mathematical modeling,hong kong,expedited

                Comments

                Comment on this article