36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Strain-Specific Protective Effect of the Immunity Induced by Live Malarial Sporozoites under Chloroquine Cover

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The efficacy of a whole-sporozoite malaria vaccine would partly be determined by the strain-specificity of the protective responses against malarial sporozoites and liver-stage parasites. Evidence from previous reports were inconsistent, where some studies have shown that the protective immunity induced by irradiated or live sporozoites in rodents or humans were cross-protective and in others strain-specific. In the present work, we have studied the strain-specificity of live sporozoite-induced immunity using two genetically and immunologically different strains of Plasmodium cynomolgi, Pc746 and PcCeylon, in toque monkeys. Two groups of monkeys were immunized against live sporozoites of either the Pc746 (n = 5), or the PcCeylon (n = 4) strain, by the bites of 2–4 sporozoite-infected Anopheles tessellates mosquitoes per monkey under concurrent treatments with chloroquine and primaquine to abrogate detectable blood infections. Subsequently, a group of non-immunized monkeys (n = 4), and the two groups of immunized monkeys were challenged with a mixture of sporozoites of the two strains by the bites of 2–5 infective mosquitoes from each strain per monkey. In order to determine the strain-specificity of the protective immunity, the proportions of parasites of the two strains in the challenge infections were quantified using an allele quantification assay, Pyrosequencing™, based on a single nucleotide polymorphism (SNP) in the parasites’ circumsporozoite protein gene. The Pyrosequencing™ data showed that a significant reduction of parasites of the immunizing strain in each group of strain-specifically immunized monkeys had occurred, indicating a stronger killing effect on parasites of the immunizing strain. Thus, the protective immunity developed following a single, live sporozoite/chloroquine immunization, acted specifically against the immunizing strain and was, therefore, strain-specific. As our experiment does not allow us to determine the parasite stage at which the strain-specific protective immunity is directed, it is possible that the target of this immunity could be either the pre-erythrocytic stage, or the blood-stage, or both.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Protection against a malaria challenge by sporozoite inoculation.

          An effective vaccine for malaria is urgently needed. Naturally acquired immunity to malaria develops slowly, and induction of protection in humans can be achieved artificially by the inoculation of radiation-attenuated sporozoites by means of more than 1000 infective mosquito bites. We exposed 15 healthy volunteers--with 10 assigned to a vaccine group and 5 assigned to a control group--to bites of mosquitoes once a month for 3 months while they were receiving a prophylactic regimen of chloroquine. The vaccine group was exposed to mosquitoes that were infected with Plasmodium falciparum, and the control group was exposed to mosquitoes that were not infected with the malaria parasite. One month after the discontinuation of chloroquine, protection was assessed by homologous challenge with five mosquitoes infected with P. falciparum. We assessed humoral and cellular responses before vaccination and before the challenge to investigate correlates of protection. All 10 subjects in the vaccine group were protected against a malaria challenge with the infected mosquitoes. In contrast, patent parasitemia (i.e., parasites found in the blood on microscopical examination) developed in all five control subjects. Adverse events were mainly reported by vaccinees after the first immunization and by control subjects after the challenge; no serious adverse events occurred. In this model, we identified the induction of parasite-specific pluripotent effector memory T cells producing interferon-gamma, tumor necrosis factor alpha, and interleukin-2 as a promising immunologic marker of protection. Protection against a homologous malaria challenge can be induced by the inoculation of intact sporozoites. (ClinicalTrials.gov number, NCT00442377.) 2009 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria.

            Immunization of volunteers by the bite of mosquitoes carrying radiation-attenuated Plasmodium falciparum sporozoites protects greater than 90% of such volunteers against malaria, if adequate numbers of immunizing biting sessions and sporozoite-infected mosquitoes are used. Nonetheless, until recently it was considered impossible to develop, license and commercialize a live, whole parasite P. falciparum sporozoite (PfSPZ) vaccine. In 2003 Sanaria scientists reappraised the potential impact of a metabolically active, non-replicating PfSPZ vaccine, and outlined the challenges to producing such a vaccine. Six years later, significant progress has been made in overcoming these challenges. This progress has enabled the manufacture and release of multiple clinical lots of a 1(st) generation metabolically active, non-replicating PfSPZ vaccine, the Sanaria PfSPZ Vaccine, submission of a successful Investigational New Drug application to the US Food and Drug Administration, and initiation of safety, immunogenicity and protective efficacy studies in volunteers in MD, US. Efforts are now focused on how best to achieve submission of a successful Biologics License Application and introduce the vaccine to the primary target population of African children in the shortest possible period of time. This will require implementation of a systematic, efficient clinical development plan. Short term challenges include optimizing the (1) efficiency and scale up of the manufacturing process and quality control assays, (2) dosage regimen and method of administration, (3) potency of the vaccine, and (4) logistics of delivering the vaccine to those who need it most, and finalizing the methods for vaccine stabilization and attenuation. A medium term goal is to design and build a facility for manufacturing highly potent and stable vaccine for pivotal Phase 3 studies and commercial launch.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protective T cell immunity against malaria liver stage after vaccination with live sporozoites under chloroquine treatment.

              In this study we present the first systematic analysis of the immunity induced by normal Plasmodium yoelii sporozoites in mice. Immunization with sporozoites, which was conducted under chloroquine treatment to minimize the influence of blood stage parasites, induced a strong protection against a subsequent sporozoite and, to a lesser extent, against infected RBC challenges. The protection induced by this immunization protocol proved to be very effective. Induction of this protective immunity depended on the presence of liver stage parasites, as primaquine treatment concurrent with sporozoite immunization abrogated protection. Protection was not found to be mediated by the Abs elicited against pre-erythrocytic and blood stage parasites, as demonstrated by inhibition assays of sporozoite penetration or development in vitro and in vivo assays of sporozoite infectivity or blood stage parasite development. CD4(+) and CD8(+) T cells were, however, responsible for the protection through the induction of IFN-gamma and NO.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                24 September 2012
                : 7
                : 9
                : e45861
                Affiliations
                [1 ]Malaria Research Unit, Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
                [2 ]School of Biological Sciences, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, Scotland, United Kingdom
                [3 ]Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
                [4 ]Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
                Technion-Israel Institute of Technology, Israel
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SP RC SH. Performed the experiments: WW SP SC KT. Analyzed the data: WW SC SP. Contributed reagents/materials/analysis tools: WW SC KT SH RC SP. Wrote the paper: WW SP RC SH SC KT. Pyrosequencing analysis done: SC RC. Sequencing of the csp gene of the two Plasmodium cynomolgi strains: KT.

                Article
                PONE-D-12-12413
                10.1371/journal.pone.0045861
                3454320
                23029282
                5f0283a2-de85-434c-a06b-403a3fe67e70
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 April 2012
                : 22 August 2012
                Page count
                Pages: 7
                Funding
                This investigation received financial support from the National Science Foundation, Sri Lanka (RG/2005/HS/14/) and the National Research Council, Sri Lanka (Research grant-05-66) granted to SP. WW was supported by a post-graduate research scholarship (NSF/Sch/2004/08) granted by the National Science Foundation of Sri Lanka. SC was supported under the Wellcome Trust Programme Grant No. 544RCX R37984, to RC. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genomics
                Immunology
                Immunity
                Immune Defense
                Immunity to Infections
                Immune Response
                Microbiology
                Immunity
                Immune Defense
                Virology
                Animal Models of Infection
                Model Organisms
                Animal Models
                Medicine
                Clinical Research Design
                Animal Models of Disease
                Infectious Diseases
                Parasitic Diseases
                Malaria
                Tropical Diseases (Non-Neglected)
                Malaria

                Uncategorized
                Uncategorized

                Comments

                Comment on this article