9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cryopreservation of immature porcine testis tissue to maintain its developmental potential after xenografting into recipient mice

      , , ,

      Theriogenology

      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of this study was to develop effective strategies for cooling and cryopreservation of immature porcine testis tissue that maintain its developmental potential. Testes from 1-wk-old piglets (Sus domestica) were subjected to 1 of 12 cooling/cryopreservation protocols: as intact testes, cooling at 4 degrees C for 24, 48, or 72h (Experiment 1); as fragments, programmed slow-freezing with dimethyl sulfoxide (DMSO), glycerol, or ethylene glycol (Experiment 2); or solid-surface vitrification using DMSO, glycerol, or ethylene glycol, each using 5-, 15-, or 30-min cryoprotectant exposure times (Experiment 3). For testis tissue xenografting, four immunodeficient recipient mice were assigned to each protocol, and each mouse received eight grafts. Recipient mice were killed 16 wk after grafting to assess the status of graft development. Based on morphology and in vitro assessment of cell viability, cooling of testis tissue for up to 72h maintained structural integrity, cell viability, in vivo growth, and developmental potential up to complete spermatogenesis comparable with that of fresh tissue (control). In frozen-thawed testis tissues, higher numbers of viable cells were present after programmed slow-freezing using glycerol compared with that after DMSO or ethylene glycol (P<0.001). Among the vitrified groups, exposure to DMSO for 5min yielded numerically higher viable cell numbers than that of other groups. Cryopreserved tissue fragments recovered after xenografting had normal spermatogenesis; germ cells advanced to round and elongated spermatids after programmed slow-freezing using glycerol, as well as after vitrification using glycerol with 5- or 15-min exposures, or using DMSO for a 5-min exposure.

          Related collections

          Author and article information

          Journal
          Theriogenology
          Theriogenology
          Elsevier BV
          0093691X
          January 2010
          January 2010
          : 73
          : 1
          : 86-96
          Article
          10.1016/j.theriogenology.2009.08.004
          19853904
          © 2010

          Comments

          Comment on this article

          Similar content 931

          Cited by 21