9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Comparative Efficiency of Intraperitoneal and Intravitreous Injection of Hydrogen Rich Saline against N-Methyl- N-Nitrosourea Induced Retinal Degeneration: A Topographic Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Retinitis pigmentosa (RP) comprises a heterogeneous group of inherited retinal diseases leading to blindness. The present study explored the protective effects of hydrogen rich saline (HRS) against the photoreceptor degeneration in the N-Methyl- N-nitrosourea (MNU) administrated rat, a pharmacologically induced RP model. The therapeutic effects of intraperitoneal (IP) and intravitreous (IV) injections of HRS on regional retina was quantified via topographic measurements. The MNU administrated rats received IV or IP injections of HRS, and then they were subjected to electroretinography, multi electrode array, histological and immunohistochemistry examinations. The concentrations of the retinal malondialdehyde (MDA), superoxide dismutase (SOD), as well as the mRNA levels of apoptotic-associated genes were quantified. The IP and IV delivery pathways of HRS were both effective to ameliorate MNU induced photoreceptor degeneration. Moreover, the IV acted as a more efficient delivery method than the IP in terms of therapeutic effects. Particularly, the topographic measurements suggested that the IV delivery of HRS could alleviate MNU induced photoreceptor degeneration in the posterior retina. The immunostaining experiments also verified the comparative efficiency between IV and IP delivery of HRS on regional cone photoreceptors. Focal cone photoreceptors showed different susceptibilities to HRS and exhibited as a distinct spatial disequilibrium: cone photoreceptors in the ST quadrant were preferentially rescued; meanwhile, HRS induced protection was feeblest in the IN quadrant. Furthermore, the HRS treatment increased the level of retinal SOD, while reduce the level of retinal MDA in MNU administered rats. The expression levels of sever apoptotic -associated genes were significantly altered by HRS treatment. Collectively, these findings suggest that the IV space is an excellent target for HRS delivery. The IV delivery of HRS can efficiently alleviate the photoreceptors (especially these locate at the posterior retina) from MNU toxicity and act as a candidate treatment for RP.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Antioxidants reduce cone cell death in a model of retinitis pigmentosa.

          Retinitis pigmentosa (RP) is a label for a group of diseases caused by a large number of mutations that result in rod photoreceptor cell death followed by gradual death of cones. The mechanism of cone cell death is uncertain. Rods are a major source of oxygen utilization in the retina and, after rods die, the level of oxygen in the outer retina is increased. In this study, we used the rd1 mouse model of RP to test the hypothesis that cones die from oxidative damage. A mixture of antioxidants was selected to try to maximize protection against oxidative damage achievable by exogenous supplements; alpha-tocopherol (200 mg/kg), ascorbic acid (250 mg/kg), Mn(III)tetrakis (4-benzoic acid) porphyrin (10 mg/kg), and alpha-lipoic acid (100 mg/kg). Mice were treated with daily injections of the mixture or each component alone between postnatal day (P)18 and P35. Between P18 and P35, there was an increase in two biomarkers of oxidative damage, carbonyl adducts measured by ELISA and immunohistochemical staining for acrolein, in the retinas of rd1 mice. The staining for acrolein in remaining cones at P35 was eliminated in antioxidant-treated rd1 mice, confirming that the treatment markedly reduced oxidative damage in cones; this was accompanied by a 2-fold increase in cone cell density and a 50% increase in medium-wavelength cone opsin mRNA. Antioxidants also caused some preservation of cone function based upon photopic electroretinograms. These data support the hypothesis that gradual cone cell death after rod cell death in RP is due to oxidative damage, and that antioxidant therapy may provide benefit.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances in hydrogen research as a therapeutic medical gas.

            Recent basic and clinical research has revealed that hydrogen is an important physiological regulatory factor with antioxidant, anti-inflammatory and anti-apoptotic protective effects on cells and organs. Therapeutic hydrogen has been applied by different delivery methods including straightforward inhalation, drinking hydrogen dissolved in water and injection with hydrogen-saturated saline. This review summarizes currently available data regarding the protective role of hydrogen, provides an outline of recent advances in research on the use of hydrogen as a therapeutic medical gas in diverse models of disease and discusses the feasibility of hydrogen as a therapeutic strategy. It is not an overstatement to say that hydrogen's impact on therapeutic and preventive medicine could be enormous in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications.

              Molecular hydrogen (H2) was believed to be inert and nonfunctional in mammalian cells. We overturned this concept by demonstrating that H2 reacts with highly reactive oxidants such as hydroxyl radical ((•)OH) and peroxynitrite (ONOO(-)) inside cells. H2 has several advantages exhibiting marked effects for medical applications: it is mild enough neither to disturb metabolic redox reactions nor to affect signaling by reactive oxygen species. Therefore, it should have no or little adverse effects. H2 can be monitored with an H2-specific electrode or by gas chromatography. H2 rapidly diffuses into tissues and cells to exhibit efficient effects. Thus, we proposed the potential of H2 for preventive and therapeutic applications. There are several methods to ingest or consume H2: inhaling H2 gas, drinking H2-dissolved water (H2-water), injecting H2-dissolved saline (H2-saline), taking an H2 bath, or dropping H2-saline onto the eyes. Recent publications revealed that, in addition to the direct neutralization of highly reactive oxidants, H2 indirectly reduces oxidative stress by regulating the expression of various genes. Moreover, by regulating gene expression, H2 functions as an anti-inflammatory, antiallergic, and antiapoptotic molecule, and stimulates energy metabolism. In addition to growing evidence obtained by model animal experiments, extensive clinical examinations were performed or are under way. Since most drugs specifically act on their specific targets, H2 seems to differ from conventional pharmaceutical drugs. Owing to its great efficacy and lack of adverse effects, H2 has potential for clinical applications for many diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                29 August 2017
                2017
                : 8
                : 587
                Affiliations
                [1] 1Department of Ophthalmology, Ophthalmology and Visual Science Key Lab of PLA, Chinese PLA General Hospital Beijing, China
                [2] 2Department of Aerospace Health Service, Fourth Military Medical University Xi’an, China
                [3] 3Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University Xi’an, China
                [4] 4Department of Cardiology, 153 Hospital of Chinese PLA Zhengzhou, China
                [5] 5Department of Neurology, The First Affiliated Hospital of Xi’an Medical University Xi’an, China
                Author notes

                Edited by: Eleonore Fröhlich, Medical University of Graz, Austria

                Reviewed by: Benedetto Falsini, Università Cattolica del Sacro Cuore, Italy; Jay Manoj Bhatt, University of Texas at El Paso, United States

                *Correspondence: Lingling Fan, drlinglingfan@ 123456163.com Linjun Yu, lemonlilyx@ 123456163.com Yifei Huang, huangyf301@ 123456163.com

                Co-first authors and have contributed equally to this work.

                This article was submitted to Predictive Toxicology, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2017.00587
                5581914
                28900397
                5f10fdc0-d2f9-4743-9966-9c4abea142b4
                Copyright © 2017 Tao, Chen, Fang, Yan, Yang, Huang, Yu and Fan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 March 2017
                : 14 August 2017
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 31, Pages: 11, Words: 0
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                hydrogen,photoreceptor degeneration,delivery efficiency,retina,therapy

                Comments

                Comment on this article