3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Non-classical secretion of a type I L-asparaginase in Bacillus subtilis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Asparagine bioavailability governs metastasis in a model of breast cancer

          Using a functional model of breast cancer heterogeneity, we previously showed that clonal sub-populations proficient at generating circulating tumour cells were not all equally capable of forming metastases at secondary sites. A combination of differential expression and focused in vitro and in vivo RNA interference screens revealed candidate drivers of metastasis that discriminated metastatic clones. Among these, asparagine synthetase expression in a patient's primary tumour was most strongly correlated with later metastatic relapse. Here we show that asparagine bioavailability strongly influences metastatic potential. Limiting asparagine by knockdown of asparagine synthetase, treatment with l-asparaginase, or dietary asparagine restriction reduces metastasis without affecting growth of the primary tumour, whereas increased dietary asparagine or enforced asparagine synthetase expression promotes metastatic progression. Altering asparagine availability in vitro strongly influences invasive potential, which is correlated with an effect on proteins that promote the epithelial-to-mesenchymal transition. This provides at least one potential mechanism for how the bioavailability of a single amino acid could regulate metastatic progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Prediction of twin-arginine signal peptides

            Background Proteins carrying twin-arginine (Tat) signal peptides are exported into the periplasmic compartment or extracellular environment independently of the classical Sec-dependent translocation pathway. To complement other methods for classical signal peptide prediction we here present a publicly available method, TatP, for prediction of bacterial Tat signal peptides. Results We have retrieved sequence data for Tat substrates in order to train a computational method for discrimination of Sec and Tat signal peptides. The TatP method is able to positively classify 91% of 35 known Tat signal peptides and 84% of the annotated cleavage sites of these Tat signal peptides were correctly predicted. This method generates far less false positive predictions on various datasets than using simple pattern matching. Moreover, on the same datasets TatP generates less false positive predictions than a complementary rule based prediction method. Conclusion The method developed here is able to discriminate Tat signal peptides from cytoplasmic proteins carrying a similar motif, as well as from Sec signal peptides, with high accuracy. The method allows filtering of input sequences based on Perl syntax regular expressions, whereas hydrophobicity discrimination of Tat- and Sec-signal peptides is carried out by an artificial neural network. A potential cleavage site of the predicted Tat signal peptide is also reported. The TatP prediction server is available as a public web server at .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms.

              In bacteria, two major pathways exist to secrete proteins across the cytoplasmic membrane. The general Secretion route, termed Sec-pathway, catalyzes the transmembrane translocation of proteins in their unfolded conformation, whereupon they fold into their native structure at the trans-side of the membrane. The Twin-arginine translocation pathway, termed Tat-pathway, catalyses the translocation of secretory proteins in their folded state. Although the targeting signals that direct secretory proteins to these pathways show a high degree of similarity, the translocation mechanisms and translocases involved are vastly different.
                Bookmark

                Author and article information

                Journal
                International Journal of Biological Macromolecules
                International Journal of Biological Macromolecules
                Elsevier BV
                01418130
                June 2021
                June 2021
                : 180
                : 677-683
                Article
                10.1016/j.ijbiomac.2021.03.104
                33757855
                5f18870e-0a8a-43b3-a831-e48089e73152
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article