272
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO 2, reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO 2, often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO 2. Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change.

          Related collections

          Most cited references157

          • Record: found
          • Abstract: found
          • Article: found

          Ocean acidification: the other CO2 problem.

          Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.
            • Record: found
            • Abstract: found
            • Article: not found

            Coral reefs under rapid climate change and ocean acidification.

            Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2 degrees C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.
              • Record: found
              • Abstract: found
              • Article: not found

              Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms.

              Ocean acidification is a pervasive stressor that could affect many marine organisms and cause profound ecological shifts. A variety of biological responses to ocean acidification have been measured across a range of taxa, but this information exists as case studies and has not been synthesized into meaningful comparisons amongst response variables and functional groups. We used meta-analytic techniques to explore the biological responses to ocean acidification, and found negative effects on survival, calcification, growth and reproduction. However, there was significant variation in the sensitivity of marine organisms. Calcifying organisms generally exhibited larger negative responses than non-calcifying organisms across numerous response variables, with the exception of crustaceans, which calcify but were not negatively affected. Calcification responses varied significantly amongst organisms using different mineral forms of calcium carbonate. Organisms using one of the more soluble forms of calcium carbonate (high-magnesium calcite) can be more resilient to ocean acidification than less soluble forms (calcite and aragonite). Additionally, there was variation in the sensitivities of different developmental stages, but this variation was dependent on the taxonomic group. Our analyses suggest that the biological effects of ocean acidification are generally large and negative, but the variation in sensitivity amongst organisms has important implications for ecosystem responses. © 2010 Blackwell Publishing Ltd/CNRS.

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                19 December 2011
                : 6
                : 12
                : e28983
                Affiliations
                [1 ]Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara California, United States of America
                [2 ]Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
                [3 ]Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
                [4 ]Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, California, United States of America
                [5 ]Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
                [6 ]Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
                University of California Merced, United States of America
                Author notes

                Conceived and designed the experiments: GEH TRM JES KSJ US LAL FM AP. Performed the experiments: BP YT JES US AP NNP PGM EDC KJK MCG EBR CAF PCY. Analyzed the data: GEH JES KSJ US LAL FM AP NNP PGM EDC KJK EBR CAF PCY TRM. Wrote the paper: GEH TRM.

                Article
                PONE-D-11-19773
                10.1371/journal.pone.0028983
                3242773
                22205986
                5f19758a-9a82-44a2-9ab3-5b708644d017
                Hofmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 October 2011
                : 17 November 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Ecology
                Marine Ecology
                Marine Biology
                Marine Ecology
                Marine Monitoring
                Marine Technology
                Earth Sciences
                Marine and Aquatic Sciences
                Oceanography
                Chemical Oceanography
                Ocean Properties
                Marine Biology
                Marine Ecology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                Related Documents Log