14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Metabolic specialization associated with phenotypic switching in Candida albicans

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phase and antigenic variation are mechanisms used by microbial pathogens to stochastically change their cell surface composition. A related property, referred to as phenotypic switching, has been described for some pathogenic fungi. This phenomenon is best studied in Candida albicans, where switch phenotypes vary in morphology, physiology, and pathogenicity in experimental models. In this study, we report an application of a custom Affymetrix GeneChip representative of the entire C. albicans genome and assay the global expression profiles of white and opaque switch phenotypes of the WO-1 strain. Of 13,025 probe sets examined, 373 ORFs demonstrated a greater than twofold difference in expression level between switch phenotypes. Among these, 221 were expressed at a level higher in opaque cells than in white cells; conversely, 152 were more highly expressed in white cells. Affected genes represent functions as diverse as metabolism, adhesion, cell surface composition, stress response, signaling, mating type, and virulence. Approximately one-third of the differences between cell types are related to metabolic pathways, opaque cells expressing a transcriptional profile consistent with oxidative metabolism and white cells expressing a fermentative one. This bias was obtained regardless of carbon source, suggesting a connection between phenotypic switching and metabolic flexibility, where metabolic specialization of switch phenotypes enhances selection in relation to the nutrients available at different anatomical sites. These results extend our understanding of strategies used in microbial phase variation and pathogenesis and further characterize the unanticipated diversity of genes expressed in phenotypic switching.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Virulence factors of Candida albicans

          Candidiasis is a common infection of the skin, oral cavity and esophagus, gastrointestinal tract, vagina and vascular system of humans. Although most infections occur in patients who are immunocompromised or debilitated in some other way, the organism most often responsible for disease, Candida albicans, expresses several virulence factors that contribute to pathogenesis. These factors include host recognition biomolecules (adhesins), morphogenesis (the reversible transition between unicellular yeast cells and filamentous, growth forms), secreted aspartyl proteases and phospholipases. Additionally, 'phenotypic switching' is accompanied by changes in antigen expression, colony morphology and tissue affinities in C. albicans and several other Candida spp. Switching might provide cells with a flexibility that results in the adaptation of the organism to the hostile conditions imposed not only by the host but also by the physician treating the infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating.

            Discovered over a decade ago, white-opaque switching in the human fungal pathogen Candida albicans is an alternation between two quasistable, heritable transcriptional states. Here, we show that white-opaque switching and sexual mating are both controlled by mating type locus homeodomain proteins and that opaque cells mate approximately 10(6) times more efficiently than do white cells. These results show that opaque cells are a mating-competent form of C. albicans and that this pathogen undergoes a white-to-opaque switch as a critical step in the mating process. As white cells are generally more robust in a mammalian host than are opaque cells, this strategy allows the organism to survive the rigors of life within a mammalian host, yet generate mating-competent cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ALS gene family of Candida albicans.

              Lois Hoyer (2001)
              The ALS gene family of Candida albicans encodes large cell-surface glycoproteins that are implicated in the process of adhesion to host surfaces. ALS genes are also found in other Candida species that are isolated from cases of clinical disease. Genes in the ALS family are differentially regulated by physiologically relevant mechanisms. ALS genes exhibit several levels of variability including strain- and allele-specific size differences for the same gene, strain-specific differences in gene regulation, the absence of particular ALS genes in certain isolates, and additional ALS coding regions in others. The differential regulation and genetic variability of the ALS genes results in a diverse cell-surface Als protein profile that is also affected by growth conditions. The ALS genes are one example of a gene family associated with pathogenicity mechanisms in C. albicans and other Candida species.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                November 12 2002
                October 23 2002
                November 12 2002
                : 99
                : 23
                : 14907-14912
                Article
                10.1073/pnas.232566499
                137518
                12397174
                5f212117-01b8-4aa1-965d-fe67b38267e1
                © 2002
                History

                Comments

                Comment on this article