12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A launch vector for the production of vaccine antigens in plants

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Historically, most vaccines have been based on killed or live‐attenuated infectious agents. Although very successful at immunizing populations against disease, both approaches raise safety concerns and often have limited production capacity. This has resulted in increased emphasis on the development of subunit vaccines. Several recombinant systems have been considered for subunit vaccine manufacture, including plants, which offer advantages both in cost and in scale of production. We have developed a plant expression system utilizing a ‘launch vector’, which combines the advantageous features of standard agrobacterial binary plasmids and plant viral vectors, to achieve high‐level target antigen expression in plants. As an additional feature, to aid in target expression, stability and purification, we have engineered a thermostable carrier molecule to which antigens are fused. We have applied this launch vector/carrier system to engineer and express target antigens from various pathogens, including, influenza A/Vietnam/04 (H5N1) virus.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome".

          The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Magnifection--a new platform for expressing recombinant vaccines in plants.

            Today, plant biotechnology relies on two processes for delivery and expression of heterologous genes in plants: stable genetic transformation and transient infection with viral vectors. Although much faster, the transient route until recently was limited because of virus' low infectivity and its inability to carry average-size or larger transgenes. A recently developed new generation transfection technology overcomes these limitations by relying on Agrobacterium as an infective systemic agent that delivers viral replicons. This improved process is being used to simultaneously start transient gene amplification and high-level expression in all mature leaves of a plant, and such a transfection can be done on an industrial scale. This eclectic technology, called 'magnifection', combines advantages of three biological systems: vector efficiency and efficient systemic DNA delivery of Agrobacterium, speed and expression level/yield of a plant RNA virus, as well as posttranslational capabilities and low production costs of a plant. The proposed process allows for industrial production that does not require genetic modification of plants, that is much faster than previous methods, and that is biologically safe. Numerous applications in the area of vaccine manufacturing are being discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato.

              Compared with vaccine delivery by injection, oral vaccines offer the hope of more convenient immunization strategies and a more practical means of implementing universal vaccination programs throughout the world. Oral vaccines act by stimulating the immune system at effector sites (lymphoid tissue) located in the gut. Genetic engineering has been used with variable success to design living and non-living systems as a means to deliver antigens to these sites and to stimulate a desired immune response. More recently, plant biotechnology techniques have been used to create plants which contain a gene derived from a human pathogen; the resultant plant tissues will accumulate an antigenic protein encoded by the foreign DNA. In pre-clinical trials, we found that antigenic proteins produced in transgenic plants retained immunogenic properties when purified; if injected into mice the antigen caused production of protein-specific antibodies. Moreover, in some experiments, if the plant tissues were simply fed to mice, a mucosal immune response occurred. The present study was conducted as a proof of principle to determine if humans would also develop a serum and/or mucosal immune response to an antigen delivered in an uncooked foodstuff.
                Bookmark

                Author and article information

                Journal
                Influenza Other Respir Viruses
                Influenza Other Respir Viruses
                10.1111/(ISSN)1750-2659
                IRV
                Influenza and Other Respiratory Viruses
                Blackwell Publishing Ltd (Oxford, UK )
                1750-2640
                1750-2659
                19 January 2007
                January 2007
                : 1
                : 1 ( doiID: 10.1111/irv.2007.1.issue-1 )
                : 19-25
                Affiliations
                [ 1 ]Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
                [ 2 ]Department of Chemistry and Biological Sciences, University of Kalmar, Kalmar, Sweden.
                Author notes
                [*]Vidadi Yusibov, Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE 19711, USA. Email: vyusibov@ 123456fraunhofer-cmb.org
                Article
                IRV005
                10.1111/j.1750-2659.2006.00005.x
                4634661
                19453476
                5f2db60e-77b7-4bfe-8cfe-03887ebafb54
                History
                Page count
                Figures: 6, Tables: 0, Pages: 7
                Categories
                Review Articles
                Custom metadata
                2.0
                January 2007
                Converter:WILEY_ML3GV2_TO_NLMPMC version:4.6.9 mode:remove_FC converted:04.11.2015

                Infectious disease & Microbiology
                carrier molecule,influenza vaccine,launch vector,lichenase,plant viral expression,subunit vaccine

                Comments

                Comment on this article