Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Experimental observation of ferrielectricity in multiferroic DyMn2O5

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      One of the major breakthroughs associated with multiferroicity in recent years is the discovery of ferroelectricity generated by specific magnetic structures in some magnetic insulating oxides such as rare-earth manganites RMnO3 and RMn2O5. An unresolved issue is the small electric polarization. Relatively large electric polarization and strong magnetoelectric coupling have been found in those manganites of double magnetic ions: magnetic rare-earth R ion and Mn ion, due to the strong R-Mn (4f-3d) interactions. DyMn2O5 is a representative example. We unveil in this work the ferrielectric nature of DyMn2O5, in which the two ferroelectric sublattices with opposite electric polarizations constitute the ferrielectric state. One sublattice has its polarization generated by the symmetric exchange striction from the Mn-Mn interactions, while the polarization of the other sublattice is attributed to the symmetric exchange striction from the Dy-Mn interactions. We present detailed measurements on the electric polarization as a function of temperature, magnetic field, and measuring paths. The present experiments may be helpful for clarifying the puzzling issues on the multiferroicity in DyMn2O5 and other RMn2O5 multiferroics.

      Related collections

      Most cited references 11

      • Record: found
      • Abstract: found
      • Article: not found

      Magnetic control of ferroelectric polarization.

      The magnetoelectric effect--the induction of magnetization by means of an electric field and induction of polarization by means of a magnetic field--was first presumed to exist by Pierre Curie, and subsequently attracted a great deal of interest in the 1960s and 1970s (refs 2-4). More recently, related studies on magnetic ferroelectrics have signalled a revival of interest in this phenomenon. From a technological point of view, the mutual control of electric and magnetic properties is an attractive possibility, but the number of candidate materials is limited and the effects are typically too small to be useful in applications. Here we report the discovery of ferroelectricity in a perovskite manganite, TbMnO3, where the effect of spin frustration causes sinusoidal antiferromagnetic ordering. The modulated magnetic structure is accompanied by a magnetoelastically induced lattice modulation, and with the emergence of a spontaneous polarization. In the magnetic ferroelectric TbMnO3, we found gigantic magnetoelectric and magnetocapacitance effects, which can be attributed to switching of the electric polarization induced by magnetic fields. Frustrated spin systems therefore provide a new area to search for magnetoelectric media.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Epitaxial BiFeO3 multiferroic thin film heterostructures.

        Enhancement of polarization and related properties in heteroepitaxially constrained thin films of the ferroelectromagnet, BiFeO3, is reported. Structure analysis indicates that the crystal structure of film is monoclinic in contrast to bulk, which is rhombohedral. The films display a room-temperature spontaneous polarization (50 to 60 microcoulombs per square centimeter) almost an order of magnitude higher than that of the bulk (6.1 microcoulombs per square centimeter). The observed enhancement is corroborated by first-principles calculations and found to originate from a high sensitivity of the polarization to small changes in lattice parameters. The films also exhibit enhanced thickness-dependent magnetism compared with the bulk. These enhanced and combined functional responses in thin film form present an opportunity to create and implement thin film devices that actively couple the magnetic and ferroelectric order parameters.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Multiferroics: a magnetic twist for ferroelectricity.

          Magnetism and ferroelectricity are essential to many forms of current technology, and the quest for multiferroic materials, where these two phenomena are intimately coupled, is of great technological and fundamental importance. Ferroelectricity and magnetism tend to be mutually exclusive and interact weakly with each other when they coexist. The exciting new development is the discovery that even a weak magnetoelectric interaction can lead to spectacular cross-coupling effects when it induces electric polarization in a magnetically ordered state. Such magnetic ferroelectricity, showing an unprecedented sensitivity to ap plied magnetic fields, occurs in 'frustrated magnets' with competing interactions between spins and complex magnetic orders. We summarize key experimental findings and the current theoretical understanding of these phenomena, which have great potential for tuneable multifunctional devices.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Laboratory of Solid State Microstructures, Nanjing University , Nanjing 210093, China
            [2 ]Department of Physics, Southeast University , Nanjing 210189, China
            Author notes
            Journal
            Sci Rep
            Sci Rep
            Scientific Reports
            Nature Publishing Group
            2045-2322
            05 February 2014
            2014
            : 4
            3913922
            srep03984
            10.1038/srep03984
            Copyright © 2014, Macmillan Publishers Limited. All rights reserved

            This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/

            Categories
            Article

            Uncategorized

            Comments

            Comment on this article