21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Green Fabrication of Amphiphilic Quaternized β-Chitin Derivatives with Excellent Biocompatibility and Antibacterial Activities for Wound Healing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          A common mechanism of cellular death induced by bactericidal antibiotics.

          Antibiotic mode-of-action classification is based upon drug-target interaction and whether the resultant inhibition of cellular function is lethal to bacteria. Here we show that the three major classes of bactericidal antibiotics, regardless of drug-target interaction, stimulate the production of highly deleterious hydroxyl radicals in Gram-negative and Gram-positive bacteria, which ultimately contribute to cell death. We also show, in contrast, that bacteriostatic drugs do not produce hydroxyl radicals. We demonstrate that the mechanism of hydroxyl radical formation induced by bactericidal antibiotics is the end product of an oxidative damage cellular death pathway involving the tricarboxylic acid cycle, a transient depletion of NADH, destabilization of iron-sulfur clusters, and stimulation of the Fenton reaction. Our results suggest that all three major classes of bactericidal drugs can be potentiated by targeting bacterial systems that remediate hydroxyl radical damage, including proteins involved in triggering the DNA damage response, e.g., RecA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The chemistry and applications of antimicrobial polymers: a state-of-the-art review.

            Microbial infection remains one of the most serious complications in several areas, particularly in medical devices, drugs, health care and hygienic applications, water purification systems, hospital and dental surgery equipment, textiles, food packaging, and food storage. Antimicrobials gain interest from both academic research and industry due to their potential to provide quality and safety benefits to many materials. However, low molecular weight antimicrobial agents suffer from many disadvantages, such as toxicity to the environment and short-term antimicrobial ability. To overcome problems associated with the low molecular weight antimicrobial agents, antimicrobial functional groups can be introduced into polymer molecules. The use of antimicrobial polymers offers promise for enhancing the efficacy of some existing antimicrobial agents and minimizing the environmental problems accompanying conventional antimicrobial agents by reducing the residual toxicity of the agents, increasing their efficiency and selectivity, and prolonging the lifetime of the antimicrobial agents. Research concerning the development of antimicrobial polymers represents a great a challenge for both the academic world and industry. This article reviews the state of the art of antimicrobial polymers primarily since the last comprehensive review by one of the authors in 1996. In particular, it discusses the requirements of antimicrobial polymers, factors affecting the antimicrobial activities, methods of synthesizing antimicrobial polymers, major fields of applications, and future and perspectives in the field of antimicrobial polymers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core.

              Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles.
                Bookmark

                Author and article information

                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                09359648
                July 2018
                July 2018
                May 29 2018
                : 30
                : 29
                : 1801100
                Affiliations
                [1 ]College of Chemistry & Molecular Sciences; Wuhan University; Wuhan 430072 P. R. China
                [2 ]Zhongnan Hospital of Wuhan University; Institute of Hepatobiliary Diseases of Wuhan University; Transplant Center of Wuhan University; Hubei Key Laboratory of Medical Technology on Transplantation; Wuhan 430071 P. R. China
                [3 ]School of Basic Medical Sciences; Wuhan University; Wuhan 430071 P. R. China
                [4 ]Research Institute of Shenzhen; Wuhan University; Shenzhen 518057 P. R. China
                Article
                10.1002/adma.201801100
                5f3152fe-1465-4d96-86bf-c3c220ba3902
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article