18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dietary Exposure to the Environmental Chemical, PFOS on the Diversity of Gut Microbiota, Associated With the Development of Metabolic Syndrome

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gut microbiome is a dynamic ecosystem formed by thousands of diverse bacterial species. This bacterial diversity is acquired early in life and shaped over time by a combination of multiple factors, including dietary exposure to distinct nutrients and xenobiotics. Alterations of the gut microbiota composition and associated metabolic activities in the gut are linked to various immune and metabolic diseases. The microbiota could potentially interact with xenobiotics in the gut environment as a result of their board enzymatic capacities and thereby affect the bioavailability and toxicity of the xenobiotics in enterohepatic circulation. Consequently, microbiome-xenobiotic interactions might affect host health. Here, we aimed to investigate the effects of dietary perfluorooctane sulfonic acid (PFOS) exposure on gut microbiota in adult mice and examine the induced changes in animal metabolic functions. In mice exposed to dietary PFOS for 7 weeks, body PFOS and lipid contents were measured, and to elucidate the effects of PFOS exposure, the metabolic functions of the animals were assessed using oral glucose-tolerance test and intraperitoneal insulin-tolerance and pyruvate-tolerance tests; moreover, on Day 50, cecal bacterial DNA was isolated and subject to 16S rDNA sequencing. Our results demonstrated that PFOS exposure caused metabolic disturbances in the animals, particularly in lipid and glucose metabolism, but did not substantially affect the diversity of gut bacterial species. However, marked modulations were detected in the abundance of metabolism-associated bacteria belonging to the phyla Firmicutes, Bacteroidetes, Proteobacteria, and Cyanobacteria, including, at different taxonomic levels, Turicibacteraceae, Turicibacterales, Turicibacter, Dehalobacteriaceae, Dehalobacterium, Allobaculum, Bacteroides acidifaciens, Alphaproteobacteria , and 4Cod-2/YS2. The results of PICRUSt analysis further indicated that PFOS exposure perturbed gut metabolism, inducing notable changes in the metabolism of amino acids (arginine, proline, lysine), methane, and a short-chain fatty acid (butanoate), all of which are metabolites widely recognized to be associated with inflammation and metabolic functions. Collectively, our study findings provide key information regarding the biological relevance of microbiome–xenobiotic interactions associated with the ecology of gut microbiota and animal energy metabolism.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity

          The gut microbiota is involved in metabolic and immune disorders associated with obesity and type 2 diabetes. We previously demonstrated that prebiotic treatment may significantly improve host health by modulating bacterial species related to the improvement of gut endocrine, barrier and immune functions. An analysis of the gut metagenome is needed to determine which bacterial functions and taxa are responsible for beneficial microbiota–host interactions upon nutritional intervention. We subjected mice to prebiotic (Pre) treatment under physiological (control diet: CT) and pathological conditions (high-fat diet: HFD) for 8 weeks and investigated the production of intestinal antimicrobial peptides and the gut microbiome. HFD feeding significantly decreased the expression of regenerating islet-derived 3-gamma (Reg3g) and phospholipase A2 group-II (PLA2g2) in the jejunum. Prebiotic treatment increased Reg3g expression (by ∼50-fold) and improved intestinal homeostasis as suggested by the increase in the expression of intectin, a key protein involved in intestinal epithelial cell turnover. Deep metagenomic sequencing analysis revealed that HFD and prebiotic treatment significantly affected the gut microbiome at different taxonomic levels. Functional analyses based on the occurrence of clusters of orthologous groups (COGs) of proteins also revealed distinct profiles for the HFD, Pre, HFD-Pre and CT groups. Finally, the gut microbiota modulations induced by prebiotics counteracted HFD-induced inflammation and related metabolic disorders. Thus, we identified novel putative taxa and metabolic functions that may contribute to the development of or protection against the metabolic alterations observed during HFD feeding and HFD-Pre feeding.
            • Record: found
            • Abstract: found
            • Article: not found

            Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice

            In humans, the composition of gut commensal bacteria is closely correlated with obesity. The bacteria modulate metabolites and influence host immunity. In this study, we attempted to determine whether there is a direct correlation between specific commensal bacteria and host metabolism. As mice aged, we found significantly reduced body weight and fat mass in Atg7ΔCD11c mice when compared with Atg7f/f mice. When mice shared commensal bacteria by co-housing or feces transfer experiments, body weight and fat mass were similar in both mouse groups. By pyrosequencing analysis, Bacteroides acidifaciens (BA) was significantly increased in feces of Atg7ΔCD11c mice compared with those of control Atg7f/f mice. Wild-type C57BL/6 (B6) mice fed with BA were significantly more likely to gain less weight and fat mass than mice fed with PBS. Of note, the expression level of peroxisome proliferator-activated receptor alpha (PPARα) was consistently increased in the adipose tissues of Atg7ΔCD11c mice, B6 mice transferred with fecal microbiota of Atg7ΔCD11c mice, and BA-fed B6 mice. Furthermore, B6 mice fed with BA showed elevated insulin levels in serum, accompanied by increased serum glucagon-like peptide-1 and decreased intestinal dipeptidyl peptidase-4. These finding suggest that BA may have potential for treatment of metabolic diseases such as diabetes and obesity.
              • Record: found
              • Abstract: found
              • Article: not found

              Amino acid metabolism in intestinal bacteria: links between gut ecology and host health.

              Bacteria in the gastrointestinal (GI) tract play an important role in the metabolism of dietary substances in the gut and extraintestinal tissues. Amino acids (AA) should be taken into consideration in the development of new strategies to enhance efficiency of nutrient utilization because they are not only major components in the diet and building blocks for protein but also regulate energy and protein homeostasis in organisms. The diversity of the AA-fermenting bacteria and their metabolic redundancy make them easier to survive and interact with their neighboring species or eukaryotic host during transition along GI tract. The outcomes of the interactions have important impacts on gut health and whole-body homeostasis. The AA-derived molecules produced by intestinal bacteria affect host health by regulating either host immunity and cell function or microbial composition and metabolism. Emerging evidence shows that dietary factors, such as protein, non-digestible carbohydrates, probiotics, synbiotics and phytochemicals, modulate AA utilization by gut microorganisms. Interdisciplinary research involving nutritionists and microbiologists is expected to rapidly expand knowledge about crucial roles for AA in gut ecology and host health.

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                24 October 2018
                2018
                : 9
                : 2552
                Affiliations
                [1] 1Department of Chemistry, City University of Hong Kong , Kowloon Tong, Hong Kong
                [2] 2Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University , Kowloon Tong, Hong Kong
                Author notes

                Edited by: Hongsheng Liu, Liaoning University, China

                Reviewed by: Alinne Castro, Universidade Católica Dom Bosco (UCDB), Brazil; Andrea Barbarossa, Università degli Studi di Bologna, Italy

                *Correspondence: Chris Kong-Chu Wong, ckcwong@ 123456hkbu.edu.hk

                This article was submitted to Systems Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.02552
                6207688
                30405595
                5f36c93d-a26e-4027-9d57-0b239e8cf3be
                Copyright © 2018 Lai, Ng, Wan, Wong, Leung, Li and Wong.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 June 2018
                : 05 October 2018
                Page count
                Figures: 4, Tables: 5, Equations: 0, References: 50, Pages: 11, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                gut microbiome,bacterial diversity,microbiome-xenobiotic interaction,pfos,energy metabolism

                Comments

                Comment on this article

                Related Documents Log