8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-542-5p is a negative prognostic factor and promotes osteosarcoma tumorigenesis by targeting HUWE1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent evidence has demonstrated that microRNAs (miRNAs) are involved in the proliferation and metastasis of osteosarcoma. Using miRNA microarray and functional screening methods to compare miRNA expression profiles in osteosarcoma cell lines treated with Trichostatin A (TSA), overexpression of miR-542-5p was determined to be involved in the proliferation of osteosarcoma. We used isobaric tags for relative and absolute quantitation (iTRAQ) and nanoscale liquid chromatography-mass spectrometry (NanoLC−MS/MS) to identify differentially expressed proteins in MNNG/HOS and U2OS osteosarcoma cell lines transfected with miR-542-5p; in both cell lines, seven proteins were downregulated, and nine were upregulated. HUWE1 was found to be a direct target of miR-542-5p in both osteosarcoma cell lines, and was negatively correlated with miR-542-5p levels in human osteosarcoma tissues. Moreover, the expression of miR-542-5p was upregulated in human osteosarcoma tissue compared with non-tumor adjacent tissue. Kaplan-Meier analysis revealed that overexpression of miR-542-5p predicted poor prognosis for osteosarcoma patients. Taken together, our results indicated that miR-542-5p plays a critical role in the proliferation of osteosarcoma and targets HUWE1.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3' untranslated region.

          Cyclin-dependent kinase inhibitor 1A (CDKN1A), also known as p21Cip1/Waf1, is a master downstream effector of tumor suppressors. In this study, we experimentally demonstrate through a high-throughput luciferase reporter screen that p21Cip1/Waf1 can be directly targeted by nearly 28 microRNAs (miRNAs). The results were further confirmed by a series of mutational analyses and luciferase reporter assays. These 28 miRNAs can substantially inhibit p21Cip1/Waf1 expression, predominantly at translational level. Many of these miRNAs were upregulated in cancers and might serve as modulators of oncogenesis. Furthermore, 8 of these 28 p21-regulating miRNAs are located in the chromosome 19 miRNA cluster, the largest miRNA gene cluster in humans, and they can clearly promote cell proliferation and cell-cycle progression in choriocarcinoma cells. In conclusion, our screening strategy provides an alternative approach to uncovering miRNA modulators of an individual mRNA, and it has identified multiple miRNAs that can suppress p21Cip1/Waf1 expression by directly targeting its 3' untranslated region.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration.

            microRNAs (miRNA, miR) play an important role in cancer cell growth and migration; however, the potential roles of miRNAs in osteosarcoma remain largely uncharacterized. By applying a miRNA microarray platform and unsupervised hierarchical clustering analysis, we found that several miRNAs have altered expression levels in osteosarcoma cell lines and tumor tissues when compared with normal human osteoblasts. Three miRNAs, miR-199a-3p, miR-127-3p, and miR-376c, were significantly decreased in osteosarcoma cell lines, whereas miR-151-3p and miR-191 were increased in osteosarcoma cell lines in comparison with osteoblasts. Transfection of precursor miR-199a-3p into osteosarcoma cell lines significantly decreased cell growth and migration, thus indicating that the inhibition effect is associated with an increase in the G(1)-phase and a decrease of the S-phase cell population. In addition, we observed decreased mTOR and Stat3 expression in miR-199a-3p transfected cells. This study provides new insights for miRNAs in osteosarcoma and suggests that miR-199a-3p may play a functional role in osteosarcoma cell growth and proliferation. Restoring miR-199a-3p's function may provide therapeutic benefits in osteosarcoma. ©2011 AACR
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The rectal cancer microRNAome--microRNA expression in rectal cancer and matched normal mucosa.

              miRNAs play a prominent role in a variety of physiologic and pathologic biologic processes, including cancer. For rectal cancers, only limited data are available on miRNA expression profiles, whereas the underlying genomic and transcriptomic aberrations have been firmly established. We therefore, aimed to comprehensively map the miRNA expression patterns of this disease. Tumor biopsies and corresponding matched mucosa samples were prospectively collected from 57 patients with locally advanced rectal cancers. Total RNA was extracted, and tumor and mucosa miRNA expression profiles were subsequently established for all patients. The expression of selected miRNAs was validated using semi-quantitative real-time PCR. Forty-nine miRNAs were significantly differentially expressed (log(2)-fold difference >0.5 and P < 0.001) between rectal cancer and normal rectal mucosa. The predicted targets for these miRNAs were enriched for the following pathways: Wnt, TGF-beta, mTOR, insulin, mitogen-activated protein kinase, and ErbB signaling. Thirteen of these 49 miRNAs seem to be rectal cancer-specific, and have not been previously reported for colon cancers: miR-492, miR-542-5p, miR-584, miR-483-5p, miR-144, miR-2110, miR-652, miR-375, miR-147b, miR-148a, miR-190, miR-26a/b, and miR-338-3p. Of clinical impact, miR-135b expression correlated significantly with disease-free and cancer-specific survival in an independent multicenter cohort of 116 patients. This comprehensive analysis of the rectal cancer miRNAome uncovered novel miRNAs and pathways associated with rectal cancer. This information contributes to a detailed view of this disease. Moreover, the identification and validation of miR-135b may help to identify novel molecular targets and pathways for therapeutic exploitation. ©2012 AACR.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                15 December 2015
                20 October 2015
                : 6
                : 40
                : 42761-42772
                Affiliations
                1 Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
                2 State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
                Author notes
                Correspondence to: Qing-cheng Yang, tjyqc@ 123456163.com
                [*]

                Authors share co-first authorship

                Article
                4767468
                26498360
                5f38c199-0688-4c3d-b8a0-f8bb2480134c
                Copyright: © 2015 Cheng et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 June 2015
                : 14 October 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                mir-542-5p,proliferation,proteomics,huwe1,osteosarcoma
                Oncology & Radiotherapy
                mir-542-5p, proliferation, proteomics, huwe1, osteosarcoma

                Comments

                Comment on this article