32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Peptides as Therapeutic Agents for Inflammatory-Related Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inflammation is a physiological mechanism used by organisms to defend themselves against infection, restoring homeostasis in damaged tissues. It represents the starting point of several chronic diseases such as asthma, skin disorders, cancer, cardiovascular syndrome, arthritis, and neurological diseases. An increasing number of studies highlight the over-expression of inflammatory molecules such as oxidants, cytokines, chemokines, matrix metalloproteinases, and transcription factors into damaged tissues. The treatment of inflammatory disorders is usually linked to the use of unspecific small molecule drugs that can cause undesired side effects. Recently, many efforts are directed to develop alternative and more selective anti-inflammatory therapies, several of them imply the use of peptides. Indeed, peptides demonstrated as elected lead compounds toward several targets for their high specificity as well as recent and innovative synthetic strategies. Several endogenous peptides identified during inflammatory responses showed anti-inflammatory activities by inhibiting, reducing, and/or modulating the expression and activity of mediators. This review aims to discuss the potentialities and therapeutic use of peptides as anti-inflammatory agents in the treatment of different inflammation-related diseases and to explore the importance of peptide-based therapies.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Inflammatory mechanisms in ischemic stroke: therapeutic approaches

          Acute ischemic stroke is the third leading cause of death in industrialized countries and the most frequent cause of permanent disability in adults worldwide. Despite advances in the understanding of the pathophysiology of cerebral ischemia, therapeutic options remain limited. Only recombinant tissue-plasminogen activator (rt-PA) for thrombolysis is currently approved for use in the treatment of this devastating disease. However, its use is limited by its short therapeutic window (three hours), complications derived essentially from the risk of hemorrhage, and the potential damage from reperfusion/ischemic injury. Two important pathophysiological mechanisms involved during ischemic stroke are oxidative stress and inflammation. Brain tissue is not well equipped with antioxidant defenses, so reactive oxygen species and other free radicals/oxidants, released by inflammatory cells, threaten tissue viability in the vicinity of the ischemic core. This review will discuss the molecular aspects of oxidative stress and inflammation in ischemic stroke and potential therapeutic strategies that target neuroinflammation and the innate immune system. Currently, little is known about endogenous counterregulatory immune mechanisms. However, recent studies showing that regulatory T cells are major cerebroprotective immunomodulators after stroke suggest that targeting the endogenous adaptive immune response may offer novel promising neuroprotectant therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophage phenotypes during tissue repair.

            Mp are crucial for tissue repair and regeneration but can also contribute to tissue damage and fibrosis. Mp can adopt a variety of functional phenotypes in response to different stimuli; two of the best-characterized in vitro phenotypes are a proinflammatory "M1" phenotype, produced by exposure to IFN-γ and TNF-α, and an anti-inflammatory "M2a" phenotype, produced by IL-4 or IL-13. M2a Mp are frequently termed "wound healing" Mp, as they express factors that are important for tissue repair. This review will summarize current knowledge of Mp phenotypes during tissue repair and will argue that these in vivo Mp populations are heterogeneous and temporally regulated and do not conform to existing, in vitro-defined M1 or M2 phenotypes. Mp during the early stages of tissue repair exhibit a more proinflammatory phenotype than their later counterparts, which in turn may exhibit some M2a-associated characteristics. However, phenotypic markers that appear to be coregulated in cultured Mp can be expressed independently of each other in vivo. Additionally, M1- and M2-associated markers may be expressed simultaneously by actual tissue-repair Mp. Improved understanding of Mp phenotypes and their regulation may assist in generation of novel therapies based on manipulating Mp function to improve healing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammatory disease processes and interactions with nutrition.

              Inflammation is a stereotypical physiological response to infections and tissue injury; it initiates pathogen killing as well as tissue repair processes and helps to restore homeostasis at infected or damaged sites. Acute inflammatory reactions are usually self-limiting and resolve rapidly, due to the involvement of negative feedback mechanisms. Thus, regulated inflammatory responses are essential to remain healthy and maintain homeostasis. However, inflammatory responses that fail to regulate themselves can become chronic and contribute to the perpetuation and progression of disease. Characteristics typical of chronic inflammatory responses underlying the pathophysiology of several disorders include loss of barrier function, responsiveness to a normally benign stimulus, infiltration of inflammatory cells into compartments where they are not normally found in such high numbers, and overproduction of oxidants, cytokines, chemokines, eicosanoids and matrix metalloproteinases. The levels of these mediators amplify the inflammatory response, are destructive and contribute to the clinical symptoms. Various dietary components including long chain omega-3 fatty acids, antioxidant vitamins, plant flavonoids, prebiotics and probiotics have the potential to modulate predisposition to chronic inflammatory conditions and may have a role in their therapy. These components act through a variety of mechanisms including decreasing inflammatory mediator production through effects on cell signaling and gene expression (omega-3 fatty acids, vitamin E, plant flavonoids), reducing the production of damaging oxidants (vitamin E and other antioxidants), and promoting gut barrier function and anti-inflammatory responses (prebiotics and probiotics). However, in general really strong evidence of benefit to human health through anti-inflammatory actions is lacking for most of these dietary components. Thus, further studies addressing efficacy in humans linked to studies providing greater understanding of the mechanisms of action involved are required.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                11 September 2018
                September 2018
                : 19
                : 9
                : 2714
                Affiliations
                Department of Pharmacy, MASBC, Metodologie Analitiche per la Salvaguardia dei Beni Culturali University of Naples “Federico II”, 80134 Naples, Italy; floriodaniele1@ 123456gmail.com (D.F.); daniela.marasco@ 123456unina.it (D.M.)
                Author notes
                [* ]Correspondence: sara.lamanna@ 123456unina.it (S.L.M.); concetta.dinatale@ 123456unina.it (C.D.N.); Tel.: +39-081-253-2043 (S.L.M. & C.D.N.)
                Article
                ijms-19-02714
                10.3390/ijms19092714
                6163503
                30208640
                5f408666-cc5c-47f8-ae0d-da20bf365233
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 July 2018
                : 09 September 2018
                Categories
                Review

                Molecular biology
                inflammatory diseases,anti-inflammatory peptides,peptides as therapeutic
                Molecular biology
                inflammatory diseases, anti-inflammatory peptides, peptides as therapeutic

                Comments

                Comment on this article