29
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of epigallocatechin-3-gallate, major ingredient of green tea, on the pharmacokinetics of rosuvastatin in healthy volunteers

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous in vitro studies have demonstrated the inhibitory effect of green tea on drug transporters. Because rosuvastatin, a lipid-lowering drug widely used for the prevention of cardiovascular events, is a substrate for many drug transporters, there is a possibility that there is interaction between green tea and rosuvastatin. The aim of this study was to investigate the effect of green tea on the pharmacokinetics of rosuvastatin in healthy volunteers. An open-label, three-treatment, fixed-sequence study was conducted. On Day 1, 20 mg of rosuvastatin was given to all subjects. After a 3-day washout period, the subjects received 20 mg of rosuvastatin plus 300 mg of epigallocatechin-3-gallate (EGCG), a major ingredient of green tea (Day 4). After a 10-day pretreatment of EGCG up to Day 14, they received rosuvastatin (20 mg) plus EGCG (300 mg) once again (Day 15). Blood samples for the pharmacokinetic assessments were collected up to 8 hours after each dose of rosuvastatin. A total of 13 healthy volunteers were enrolled. Compared with the administration of rosuvastatin alone, the concomitant use at Day 4 significantly reduced the area under the concentration–time curve from time 0 to the last measurable time (AUC last) by 19% (geometric mean ratio 0.81, 90% confidence interval [CI] 0.67–0.97) and the peak plasma concentration ( C max) by 15% (geometric mean ratio 0.85, 90% CI 0.70–1.04). AUC last or C max of rosuvastatin on Day 15 was not significantly different from that on Day 1. This study demonstrated that co-administration of EGCG reduces the systemic exposure of rosuvastatin by 19%, and pretreatment of EGCG can eliminate that effect of co-administration of EGCG.

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer prevention by tea: animal studies, molecular mechanisms and human relevance.

          Extracts of tea, especially green tea, and tea polyphenols have been shown to inhibit the formation and development of tumours at different organ sites in animal models. There is considerable evidence that tea polyphenols, in particular (-)-epigallocatechin-3-gallate, inhibit enzyme activities and signal transduction pathways, resulting in the suppression of cell proliferation and enhancement of apoptosis, as well as the inhibition of cell invasion,angiogenesis and metastasis. Here, we review these biological activities and existing data relating tea consumption to human cancer risk in an attempt to understand the potential use of tea for cancer prevention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study.

            Green tea polyphenols have been extensively studied as cardiovascular disease and cancer chemopreventive agents in vitro and in animal studies. However, the effects of green tea consumption in humans remain unclear. To investigate the associations between green tea consumption and all-cause and cause-specific mortality. The Ohsaki National Health Insurance Cohort Study, a population-based, prospective cohort study initiated in 1994 among 40,530 Japanese adults aged 40 to 79 years without history of stroke, coronary heart disease, or cancer at baseline. Participants were followed up for up to 11 years (1995-2005) for all-cause mortality and for up to 7 years (1995-2001) for cause-specific mortality. Mortality due to cardiovascular disease, cancer, and all causes. Over 11 years of follow-up (follow-up rate, 86.1%), 4209 participants died, and over 7 years of follow-up (follow-up rate, 89.6%), 892 participants died of cardiovascular disease and 1134 participants died of cancer. Green tea consumption was inversely associated with mortality due to all causes and due to cardiovascular disease. The inverse association with all-cause mortality was stronger in women (P = .03 for interaction with sex). In men, the multivariate hazard ratios of mortality due to all causes associated with different green tea consumption frequencies were 1.00 (reference) for less than 1 cup/d, 0.93 (95% confidence interval [CI], 0.83-1.05) for 1 to 2 cups/d, 0.95 (95% CI, 0.85-1.06) for 3 to 4 cups/d, and 0.88 (95% CI, 0.79-0.98) for 5 or more cups/d, respectively (P = .03 for trend). The corresponding data for women were 1.00, 0.98 (95% CI, 0.84-1.15), 0.82 (95% CI, 0.70-0.95), and 0.77 (95% CI, 0.67-0.89), respectively (P<.001 for trend). The inverse association with cardiovascular disease mortality was stronger than that with all-cause mortality. This inverse association was also stronger in women (P = .08 for interaction with sex). In women, the multivariate hazard ratios of cardiovascular disease mortality across increasing green tea consumption categories were 1.00, 0.84 (95% CI, 0.63-1.12), 0.69 (95% CI, 0.52-0.93), and 0.69 (95% CI, 0.53-0.90), respectively (P = .004 for trend). Among the types of cardiovascular disease mortality, the strongest inverse association was observed for stroke mortality. In contrast, the hazard ratios of cancer mortality were not significantly different from 1.00 in all green tea categories compared with the lowest-consumption category. Green tea consumption is associated with reduced mortality due to all causes and due to cardiovascular disease but not with reduced mortality due to cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals.

              Green tea and green tea polyphenols have been shown to possess cancer preventive activities in preclinical model systems. In preparation for future green tea intervention trials, we have conducted a clinical study to determine the safety and pharmacokinetics of green tea polyphenols after 4 weeks of daily p.o. administration of epigallocatechin gallate (EGCG) or Polyphenon E (a defined, decaffeinated green tea polyphenol mixture). In an exploratory fashion, we have also determined the effect of chronic green tea polyphenol administration on UV-induced erythema response. Healthy participants with Fitzpatric skin type II or III underwent a 2-week run-in period and were randomly assigned to receive one of the five treatments for 4 weeks: 800 mg EGCG once/day, 400 mg EGCG twice/day, 800 mg EGCG as Polyphenon E once/day, 400 mg EGCG as Polyphenon E twice/day, or a placebo once/day (8 subjects/group). Samples were collected and measurements performed before and after the 4-week treatment period for determination of safety, pharmacokinetics, and biological activity of green tea polyphenol treatment. Adverse events reported during the 4-week treatment period include excess gas, upset stomach, nausea, heartburn, stomach ache, abdominal pain, dizziness, headache, and muscle pain. All of the reported events were rated as mild events. For most events, the incidence reported in the polyphenol-treated groups was not more than that reported in the placebo group. No significant changes were observed in blood counts and blood chemistry profiles after repeated administration of green tea polyphenol products. There was a >60% increase in the area under the plasma EGCG concentration-time curve after 4 weeks of green tea polyphenol treatment at a dosing schedule of 800 mg once daily. No significant changes were observed in the pharmacokinetics of EGCG after repeated green tea polyphenol treatment at a regimen of 400 mg twice daily. The pharmacokinetics of the conjugated metabolites of epigallocatechin and epicatechin were not affected by repeated green tea polyphenol treatment. Four weeks of green tea polyphenol treatment at the selected dose and dosing schedule did not provide protection against UV-induced erythema. We conclude that it is safe for healthy individuals to take green tea polyphenol products in amounts equivalent to the EGCG content in 8-16 cups of green tea once a day or in divided doses twice a day for 4 weeks. There is a >60% increase in the systemic availability of free EGCG after chronic green tea polyphenol administration at a high daily bolus dose (800 mg EGCG or Polyphenon E once daily).
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2017
                09 May 2017
                : 11
                : 1409-1416
                Affiliations
                [1 ]Department of Clinical Pharmacology, Konkuk University Medical Center, Seoul
                [2 ]Center for Clinical Pharmacology, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Jeonbuk
                [3 ]Nephrology Clinic, National Cancer Center, Goyang, Gyeonggi-do
                [4 ]Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
                Author notes
                Correspondence: Min-Gul Kim, Department of Pharmacology, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-Gu, Jeonju, Jeonbuk 561-712, Republic of Korea, Tel +82 63 259 3480, Fax +82 63 259 3483, Email mgkim@ 123456jbcp.kr
                Article
                dddt-11-1409
                10.2147/DDDT.S130050
                5431696
                28533679
                5f4678f4-c3ca-4491-961b-109670363425
                © 2017 Kim et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                rosuvastatin,green tea,egcg,pharmacokinetics,drug interaction,drug transporter

                Comments

                Comment on this article