13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Smartphone-based multiplex 30-minute nucleic acid test of live virus from nasal swab extract

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A 30-minute nucleic acid test for equine respiratory virus from nasal swab material, detected with a smartphone.

          Abstract

          Rapid, sensitive and specific detection and reporting of infectious pathogens is important for patient management and epidemic surveillance. We demonstrated a point-of-care system integrated with a smartphone for detecting live virus from nasal swab media, using a panel of equine respiratory infectious diseases as a model system for corresponding human diseases such as COVID-19. Specific nucleic acid sequences of five pathogens were amplified by loop-mediated isothermal amplification on a microfluidic chip and detected at the end of reactions by the smartphone. Pathogen-spiked horse nasal swab samples were correctly diagnosed using our system, with a limit of detection comparable to that of the traditional lab-based test, polymerase chain reaction, with results achieved in ∼30 minutes.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Isothermal Amplification of Nucleic Acids.

          Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: a retrospective analysis of data from 145 countries

            Objective To estimate the burden of diarrhoeal diseases from exposure to inadequate water, sanitation and hand hygiene in low- and middle-income settings and provide an overview of the impact on other diseases. Methods For estimating the impact of water, sanitation and hygiene on diarrhoea, we selected exposure levels with both sufficient global exposure data and a matching exposure-risk relationship. Global exposure data were estimated for the year 2012, and risk estimates were taken from the most recent systematic analyses. We estimated attributable deaths and disability-adjusted life years (DALYs) by country, age and sex for inadequate water, sanitation and hand hygiene separately, and as a cluster of risk factors. Uncertainty estimates were computed on the basis of uncertainty surrounding exposure estimates and relative risks. Results In 2012, 502 000 diarrhoea deaths were estimated to be caused by inadequate drinking water and 280 000 deaths by inadequate sanitation. The most likely estimate of disease burden from inadequate hand hygiene amounts to 297 000 deaths. In total, 842 000 diarrhoea deaths are estimated to be caused by this cluster of risk factors, which amounts to 1.5% of the total disease burden and 58% of diarrhoeal diseases. In children under 5 years old, 361 000 deaths could be prevented, representing 5.5% of deaths in that age group. Conclusions This estimate confirms the importance of improving water and sanitation in low- and middle-income settings for the prevention of diarrhoeal disease burden. It also underscores the need for better data on exposure and risk reductions that can be achieved with provision of reliable piped water, community sewage with treatment and hand hygiene.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Point-of-care nucleic acid testing for infectious diseases.

              Nucleic acid testing for infectious diseases at the point of care is beginning to enter clinical practice in developed and developing countries; especially for applications requiring fast turnaround times, and in settings where a centralized laboratory approach faces limitations. Current systems for clinical diagnostic applications are mainly PCR-based, can only be used in hospitals, and are still relatively complex and expensive. Integrating sample preparation with nucleic acid amplification and detection in a cost-effective, robust, and user-friendly format remains challenging. This review describes recent technical advances that might be able to address these limitations, with a focus on isothermal nucleic acid amplification methods. It briefly discusses selected applications related to the diagnosis and management of tuberculosis, HIV, and perinatal and nosocomial infections. Copyright © 2011. Published by Elsevier Ltd.
                Bookmark

                Author and article information

                Journal
                LCAHAM
                Lab on a Chip
                Lab Chip
                Royal Society of Chemistry (RSC)
                1473-0197
                1473-0189
                2020
                2020
                Affiliations
                [1 ]Department of Electrical and Computer Engineering
                [2 ]University of Illinois at Urbana-Champaign
                [3 ]USA
                [4 ]Department of Bioengineering
                [5 ]RAIN Incubator
                [6 ]Tacoma
                [7 ]Department of Interdisciplinary Arts and Sciences & The Center for Urban Waters
                [8 ]University of Washington Tacoma
                [9 ]Department of Animal Sciences
                [10 ]Private equine veterinarian
                Article
                10.1039/D0LC00304B
                32334422
                5f4d08f0-215a-44c5-8409-ac4b2e8e9d26
                © 2020

                Free to read

                http://rsc.li/journals-terms-of-use#chorus

                History

                Comments

                Comment on this article