17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      c-Myc Alters Substrate Utilization and O-GlcNAc Protein Posttranslational Modifications without Altering Cardiac Function during Early Aortic Constriction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypertrophic stimuli cause transcription of the proto-oncogene c-Myc (Myc). Prior work showed that myocardial knockout of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we assessed the interplay between Myc, substrate oxidation and cardiac function during early pressure overload hypertrophy. Mice with cardiac specific, inducible Myc knockout (MycKO-TAC) and non-transgenic littermates (Cont-TAC) were subjected to transverse aortic constriction (TAC; n = 7/group). Additional groups underwent sham surgery (Cont-Sham and MycKO-Sham, n = 5 per group). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. In sham hearts, Myc knockout did not affect cardiac function or substrate preferences for the citric acid cycle. However, Myc knockout altered fractional contributions during TAC. The unlabeled fractional contribution increased in MycKO-TAC versus Cont-TAC, whereas ketone and free fatty acid fractional contributions decreased. Additionally, protein posttranslational modifications by O-GlcNAc were significantly greater in Cont-TAC versus both Cont-Sham and MycKO-TAC. In conclusion, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy, which may regulate Myc-induced metabolic changes.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes.

          The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result in both ATP-producing and non-ATP-producing end points for each class of energy substrates. The most salient feature of the network is the metabolic flexibility demonstrated in response to various stimuli, including developmental changes and nutritional status. The heart is also capable of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in modulations of myocardial energetics and contractile function. In a quest to understand the complexity of the cardiac metabolic network, pharmacological and genetic tools have been engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of therapeutic interventions have been tested clinically to target substrate preference, insulin sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to growth, survival, and other signaling pathways through the production of metabolic intermediates has been increasingly noted. In this review, we provide an overview of the cardiac metabolic network and highlight alterations observed in cardiac pathologies as well as strategies used as metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth and survival are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pyruvate kinase type M2 and its role in tumor growth and spreading.

            Proliferating cells and tumor cells in particular express the pyruvate kinase isoenzyme type M2 (M2-PK). Within the tumor metabolome M2-PK regulates the proportions of glucose carbons that are channelled to synthetic processes (inactive dimeric form) or used for glycolytic energy production (highly active tetrameric form, a component of the glycolytic enzyme complex). In tumor cells, the dimeric form of M2-PK (Tumor M2-PK) is always predominant. The dimerization is caused by direct interaction of M2-PK with certain oncoproteins. The switch between the tetrameric and dimeric form of M2-PK allows tumor cells to survive in environments with varying oxygen und nutrient supply.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype.

              Increasing evidence suggests that angiotensin II (Ang II) may act as a growth factor for the heart. However, direct effects of Ang II on mammalian cardiac cells (myocytes and nonmyocytes), independent of secondary hemodynamic and neurohumoral effects, have not been well characterized. Therefore, we analyzed the molecular phenotype of cultured cardiac cells from neonatal rats in response to Ang II. In addition, we examined the effects of selective Ang II receptor subtype antagonists in mediating the biological effects of Ang II. In myocyte culture, Ang II caused an increase in protein synthesis without changing the rate of DNA synthesis. In contrast, Ang II induced increases in protein synthesis, DNA synthesis, and cell number in nonmyocyte cultures (mostly cardiac fibroblasts). The Ang II-induced hypertrophic response of myocytes and mitogenic response of fibroblasts were mediated primarily by the AT1 receptor. Ang II caused a rapid induction of many immediate-early genes (c-fos, c-jun, jun B, Egr-1, and c-myc) in myocyte and nonmyocyte cultures. Ang II induced "late" markers for cardiac hypertrophy, skeletal alpha-actin and atrial natriuretic factor expression, within 6 hours in myocytes. Ang II also caused upregulation of the angiotensinogen gene and transforming growth factor-beta 1 gene within 6 hours. Induction of immediate-early genes, late genes, and growth factor genes by Ang II was fully blocked by an AT1 receptor antagonist but not by an AT2 receptor antagonist. These results indicate that: (1) Ang II causes hypertrophy of cardiac myocytes and mitogenesis of cardiac fibroblasts, (2) the phenotypic changes of cardiac cells in response to Ang II in vitro closely mimic those of growth factor response in vitro and of load-induced hypertrophy in vivo, (3) all biological effects of Ang II examined here are mediated primarily by the AT1 receptor subtype, and (4) Ang II may initiate a positive-feedback regulation of cardiac hypertrophic response by inducing the angiotensinogen gene and transforming growth factor-beta 1 gene.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                12 August 2015
                2015
                : 10
                : 8
                : e0135262
                Affiliations
                [1 ]Seattle Children’s Research Institute, Seattle, WA, United States of America
                [2 ]Department of Pediatrics, Division of Critical Care Medicine, University of Washington, Seattle, Washington, United States of America
                [3 ]Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, WA, United States of America
                [4 ]Department of Pediatrics, Division of Cardiology, University of Washington, Seattle, Washington, United States of America
                Université catholique de Louvain, BELGIUM
                Author notes

                Competing Interests: The authors have declared that no competing interest exist.

                Conceived and designed the experiments: AO MP DL MB LS. Performed the experiments: DL LS MB MK NI MP AO. Analyzed the data: DL MB MP AO. Contributed reagents/materials/analysis tools: DL LS MB MK NI MP AO. Wrote the paper: AO MP DL.

                Article
                PONE-D-15-13263
                10.1371/journal.pone.0135262
                4534195
                26266538
                5f61dc5f-44d4-40ec-be5c-91cf098dbbb7
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 26 March 2015
                : 20 July 2015
                Page count
                Figures: 4, Tables: 4, Pages: 16
                Funding
                This work was supported by the National Heart, Lung, and Blood Institute, Grant K08-HL-092333 to A. K. Olson.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and/or its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article