33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physiological and molecular implications of plant polyamine metabolism during biotic interactions

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During ontogeny, plants interact with a wide variety of microorganisms. The association with mutualistic microbes results in benefits for the plant. By contrast, pathogens may cause a remarkable impairment of plant growth and development. Both types of plant–microbe interactions provoke notable changes in the polyamine (PA) metabolism of the host and/or the microbe, being each interaction a complex and dynamic process. It has been well documented that the levels of free and conjugated PAs undergo profound changes in plant tissues during the interaction with microorganisms. In general, this is correlated with a precise and coordinated regulation of PA biosynthetic and catabolic enzymes. Interestingly, some evidence suggests that the relative importance of these metabolic pathways may depend on the nature of the microorganism, a concept that stems from the fact that these amines mediate the activation of plant defense mechanisms. This effect is mediated mostly through PA oxidation, even though part of the response is activated by non-oxidized PAs. In the last years, a great deal of effort has been devoted to profile plant gene expression following microorganism recognition. In addition, the phenotypes of transgenic and mutant plants in PA metabolism genes have been assessed. In this review, we integrate the current knowledge on this field and analyze the possible roles of these amines during the interaction of plants with microbes.

          Related collections

          Most cited references151

          • Record: found
          • Abstract: found
          • Article: not found

          Polyamines: molecules with regulatory functions in plant abiotic stress tolerance.

          Early studies on plant polyamine research pointed to their involvement in responses to different environmental stresses. During the last few years, genetic, transcriptomic and metabolomic approaches have unravelled key functions of different polyamines in the regulation of abiotic stress tolerance. Nevertheless, the precise molecular mechanism(s) by which polyamines control plant responses to stress stimuli are largely unknown. Recent studies indicate that polyamine signalling is involved in direct interactions with different metabolic routes and intricate hormonal cross-talks. Here we discuss the integration of polyamines with other metabolic pathways by focusing on molecular mechanisms of their action in abiotic stress tolerance. Recent advances in the cross talk between polyamines and abscisic acid are discussed and integrated with processes of reactive oxygen species (ROS) signalling, generation of nitric oxide, modulation of ion channel activities and Ca(2+) homeostasis, amongst others.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coordinating nodule morphogenesis with rhizobial infection in legumes.

            The formation of nitrogen-fixing nodules on legumes requires an integration of infection by rhizobia at the root epidermis and the initiation of cell division in the cortex, several cell layers away from the sites of infection. Several recent developments have added to our understanding of the signaling events in the epidermis associated with the perception of rhizobial nodulation factors and the role of plant hormones in the activation of cell division leading to nodule morphogenesis. This review focuses on the tissue-specific nature of the developmental processes associated with nodulation and the mechanisms by which these processes are coordinated during the formation of a nodule.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A perspective of polyamine metabolism.

              Polyamines are essential for the growth and function of normal cells. They interact with various macromolecules, both electrostatically and covalently and, as a consequence, have a variety of cellular effects. The complexity of polyamine metabolism and the multitude of compensatory mechanisms that are invoked to maintain polyamine homoeostasis argue that these amines are critical to cell survival. The regulation of polyamine content within cells occurs at several levels, including transcription and translation. In addition, novel features such as the +1 frameshift required for antizyme production and the rapid turnover of several of the enzymes involved in the pathway make the regulation of polyamine metabolism a fascinating subject. The link between polyamine content and human disease is unequivocal, and significant success has been obtained in the treatment of a number of parasitic infections. Targeting the polyamine pathway as a means of treating cancer has met with limited success, although the development of drugs such as DFMO (alpha-difluoromethylornithine), a rationally designed anticancer agent, has revolutionized our understanding of polyamine function in cell growth and provided 'proof of concept' that influencing polyamine metabolism and content within tumour cells will prevent tumour growth. The more recent development of the polyamine analogues has been pivotal in advancing our understanding of the necessity to deplete all three polyamines to induce apoptosis in tumour cells. The current thinking is that the polyamine inhibitors/analogues may also be useful agents in the chemoprevention of cancer and, in this area, we may yet see a revival of DFMO. The future will be in adopting a functional genomics approach to identifying polyamine-regulated genes linked to either carcinogenesis or apoptosis.
                Bookmark

                Author and article information

                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                27 January 2014
                18 March 2014
                2014
                : 5
                : 95
                Affiliations
                [1] 1División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí México
                [2] 2UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas Chascomús, Argentina
                [3] 3Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, México
                [4] 4UB1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas Chascomús, Argentina
                Author notes

                Edited by: Ruben Alcazar, Universitat de Barcelona, Spain

                Reviewed by: Francisco Marco, Universitat de València, Spain; Panagiotis N. Moschou, Swedish University of Agricultural Sciences, Sweden

                *Correspondence: Andrés Gárriz, UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Intendente Marino Km 8.2, Chascomús, Buenos Aires 7130, Argentina e-mail: garriz@ 123456intech.gov.ar

                This article was submitted to Plant Metabolism and Chemodiversity, a section of the journal Frontiers in Plant Science.

                Article
                10.3389/fpls.2014.00095
                3957736
                24672533
                5f6aded0-c94b-439a-bc63-96bfb92f90f1
                Copyright © 2014 Jiménez-Bremont, Marina, Guerrero-González, Rossi, Sánchez-Rangel, Rodríguez-Kessler, Ruiz and Gárriz.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 January 2014
                : 25 February 2014
                Page count
                Figures: 1, Tables: 0, Equations: 1, References: 161, Pages: 14, Words: 0
                Categories
                Plant Science
                Review Article

                Plant science & Botany
                polyamines,spermidine,spermine,putrescine,thermospermine,plant pathogen,mutualism
                Plant science & Botany
                polyamines, spermidine, spermine, putrescine, thermospermine, plant pathogen, mutualism

                Comments

                Comment on this article