+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The YAP/TAZ Pathway in Osteogenesis and Bone Sarcoma Pathogenesis


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          YAP and TAZ are intracellular messengers communicating multiple interacting extracellular biophysical and biochemical cues to the transcription apparatus in the nucleus and back to the cell/tissue microenvironment interface through the regulation of cytoskeletal and extracellular matrix components. Their activity is negatively and positively controlled by multiple phosphorylation events. Phenotypically, they serve an important role in cellular plasticity and lineage determination during development. As they regulate self-renewal, proliferation, migration, invasion and differentiation of stem cells, perturbed expression of YAP/TAZ signaling components play important roles in tumorigenesis and metastasis. Despite their high structural similarity, YAP and TAZ are functionally not identical and may play distinct cell type and differentiation stage-specific roles mediated by a diversity of downstream effectors and upstream regulatory molecules. However, YAP and TAZ are frequently looked at as functionally redundant and are not sufficiently discriminated in the scientific literature. As the extracellular matrix composition and mechanosignaling are of particular relevance in bone formation during embryogenesis, post-natal bone elongation and bone regeneration, YAP/TAZ are believed to have critical functions in these processes. Depending on the differentiation stage of mesenchymal stem cells during endochondral bone development, YAP and TAZ serve distinct roles, which are also reflected in bone tumors arising from the mesenchymal lineage at different developmental stages. Efforts to clinically translate the wealth of available knowledge of the pathway for cancer diagnostic and therapeutic purposes focus mainly on YAP and TAZ expression and their role as transcriptional co-activators of TEAD transcription factors but rarely consider the expression and activity of pathway modulatory components and other transcriptional partners of YAP and TAZ. As there is a growing body of evidence for YAP and TAZ as potential therapeutic targets in several cancers, we here interrogate the applicability of this concept to bone tumors. To this end, this review aims to summarize our current knowledge of YAP and TAZ in cell plasticity, normal bone development and bone cancer.

          Related collections

          Most cited references226

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP.

          The Drosophila TEAD ortholog Scalloped is required for Yki-mediated overgrowth but is largely dispensable for normal tissue growth, suggesting that its mammalian counterpart may be exploited for selective inhibition of oncogenic growth driven by YAP hyperactivation. Here we test this hypothesis genetically and pharmacologically. We show that a dominant-negative TEAD molecule does not perturb normal liver growth but potently suppresses hepatomegaly/tumorigenesis resulting from YAP overexpression or Neurofibromin 2 (NF2)/Merlin inactivation. We further identify verteporfin as a small molecule that inhibits TEAD-YAP association and YAP-induced liver overgrowth. These findings provide proof of principle that inhibiting TEAD-YAP interactions is a pharmacologically viable strategy against the YAP oncoprotein.
            • Record: found
            • Abstract: found
            • Article: not found

            YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response.

            The Hippo transducers YAP/TAZ have been shown to play positive, as well as negative, roles in Wnt signaling, but the underlying mechanisms remain unclear. Here, we provide biochemical, functional, and genetic evidence that YAP and TAZ are integral components of the β-catenin destruction complex that serves as cytoplasmic sink for YAP/TAZ. In Wnt-ON cells, YAP/TAZ are physically dislodged from the destruction complex, allowing their nuclear accumulation and activation of Wnt/YAP/TAZ-dependent biological effects. YAP/TAZ are required for intestinal crypt overgrowth induced by APC deficiency and for crypt regeneration ex vivo. In Wnt-OFF cells, YAP/TAZ are essential for β-TrCP recruitment to the complex and β-catenin inactivation. In Wnt-ON cells, release of YAP/TAZ from the complex is instrumental for Wnt/β-catenin signaling. In line, the β-catenin-dependent maintenance of ES cells in an undifferentiated state is sustained by loss of YAP/TAZ. This work reveals an unprecedented signaling framework relevant for organ size control, regeneration, and tumor suppression. Copyright © 2014 Elsevier Inc. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Reaching a genetic and molecular understanding of skeletal development.

              In the last ten years, we have made considerable progress in our genetic and molecular understanding of all aspects of skeletal development, chondrogenesis, joint formation, and osteogenesis. This review addresses the role of the principal growth factors and transcription factors affecting these different processes and presents, in several cases, the genetic cascade leading to cell differentiation.

                Author and article information

                15 April 2020
                April 2020
                : 9
                : 4
                : 972
                [1 ]St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; lisa.bierbaumer@ 123456ccri.at (L.B.); branka.radic-sarikas@ 123456ccri.at (B.R.-S.)
                [2 ]Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
                Author notes
                Author information
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                : 18 March 2020
                : 11 April 2020

                hippo pathway,mechanosignaling,bone development,osteosarcoma,chondrosarcoma,ewing sarcoma,emt,yap,wwtr1,taz,ews-fli1,beta-catenin,micrornas,verteporfin


                Comment on this article