47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          P2X3 and P2X2/3 receptors are highly localized on peripheral and central processes of sensory afferent nerves, and activation of these channels contributes to the pronociceptive effects of ATP. A-317491 is a novel non-nucleotide antagonist of P2X3 and P2X2/3 receptor activation. A-317491 potently blocked recombinant human and rat P2X3 and P2X2/3 receptor-mediated calcium flux (Ki = 22-92 nM) and was highly selective (IC50 >10 microM) over other P2 receptors and other neurotransmitter receptors, ion channels, and enzymes. A-317491 also blocked native P2X3 and P2X2/3 receptors in rat dorsal root ganglion neurons. Blockade of P2X3 containing channels was stereospecific because the R-enantiomer (A-317344) of A-317491 was significantly less active at P2X3 and P2X2/3 receptors. A-317491 dose-dependently (ED50 = 30 micromolkg s.c.) reduced complete Freund's adjuvant-induced thermal hyperalgesia in the rat. A-317491 was most potent (ED50 = 10-15 micromolkg s.c.) in attenuating both thermal hyperalgesia and mechanical allodynia after chronic nerve constriction injury. The R-enantiomer, A-317344, was inactive in these chronic pain models. Although active in chronic pain models, A-317491 was ineffective (ED50 >100 micromolkg s.c.) in reducing nociception in animal models of acute pain, postoperative pain, and visceral pain. The present data indicate that a potent and selective antagonist of P2X3 and P2X2/3 receptors effectively reduces both nerve injury and chronic inflammatory nociception, but P2X3 and P2X2/3 receptor activation may not be a major mediator of acute, acute inflammatory, or visceral pain.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          A P2X purinoceptor expressed by a subset of sensory neurons.

          ATP is known to depolarize sensory neurons, and may play a role in nociceptor activation when released from damaged tissue. Here we report the molecular cloning and characterization of a new member of the P2X receptor family, P2X3, expressed by these cells. The channel transcript was present in a subset of rat dorsal-root-ganglion sensory neurons, some of which express nociceptor-associated markers; it was absent in other tissues that were tested, including sympathetic, enteric and central nervous system neurons. Moreover, when expressed in Xenopus oocytes, the channel showed an ATP-dependent cation flux. P2X3 is the only ligand-gated channel known to be expressed exclusively by a subset of sensory neurons. The remarkable selectivity of expression of the channel coupled with its sensory neuron-like pharmacology suggests that this channel may transduce ATP-evoked nociceptor activation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons.

            Cation-selective P2X receptor channels were first described in sensory neurons where they are important for primary afferent neurotransmission and nociception. Here we report the cloning of a complementary DNA (P2X3) from rat dorsal root ganglia that had properties dissimilar to those of sensory neurons. We also found RNA for (P2X1)(ref. 7), (P2X2)(ref. 8) and P2X4 (ref. 9) in sensory neurons; channels expressed from individual cDNAs did not reproduce those of sensory ganglia. Coexpression of P2X3 with P2X2, but not other combinations, yielded ATP-activated currents that closely resembled those in sensory neurons. These properties could not be accounted for by addition of the two sets of channels, indicating that a new channel had formed by subunit heteropolymerization. Although in some tissues responses to ATP can be accounted for by homomeric channels, our results indicate that ATP-gated channels of sensory neurons may form by a specific heteropolymerization of P2X receptor subunits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses.

              Painful stimuli to the skin initiate action potentials in the peripheral terminals of dorsal root ganglion (DRG) neurons. These action potentials propagate to DRG central terminals in the dorsal horn of the spinal cord, evoking release of excitatory transmitters such as glutamate onto postsynaptic dorsal horn neurons. P2X receptors, a family of ligand-gated ion channels activated by the endogenous ligand ATP, are highly expressed by DRG neurons. Immunoreactivity to P2X receptors has been identified in the dorsal horn superficial laminae associated with nociceptive DRG central terminals, suggesting the presence of presynaptic P2X receptors. Here we have used a DRG-dorsal horn co-culture system to show that P2X receptors are localized at presynaptic sites on DRG neurons; that activation of these receptors results in increased frequency of spontaneous glutamate release; and that activation of P2X receptors at or near presynaptic DRG nerve terminals elicits action potentials that cause evoked glutamate release. Thus activation of P2X receptors at DRG central terminals can modify sensory signal throughput, and might even initiate sensory signals at central synapses without direct peripheral input. This putative central modulation and generation of sensory signals may be associated with physiological and pathological pain sensation, making presynaptic P2X receptors a possible target for pain therapy.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                December 24 2002
                December 13 2002
                December 24 2002
                : 99
                : 26
                : 17179-17184
                Article
                10.1073/pnas.252537299
                139289
                12482951
                5f8e9855-98bf-4230-9395-8a4c24e8721c
                © 2002
                History

                Comments

                Comment on this article