7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recent progress in the development of Toll-like receptor (TLR) antagonists

      ,
      Expert Opinion on Therapeutic Patents
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Recognition of microorganisms and activation of the immune response.

          The mammalian immune system has innate and adaptive components, which cooperate to protect the host against microbial infections. The innate immune system consists of functionally distinct 'modules' that evolved to provide different forms of protection against pathogens. It senses pathogens through pattern-recognition receptors, which trigger the activation of antimicrobial defences and stimulate the adaptive immune response. The adaptive immune system, in turn, activates innate effector mechanisms in an antigen-specific manner. The connections between the various immune components are not fully understood, but recent progress brings us closer to an integrated view of the immune system and its function in host defence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting Toll-like receptors: emerging therapeutics?

            There is a growing interest in the targeting of Toll-like receptors (TLRs) for the prevention and treatment of cancer, rheumatoid arthritis, inflammatory bowel disease and systemic lupus erythematosus (SLE). Several new compounds are now undergoing preclinical and clinical evaluation, with a particular focus on TLR7 and TLR9 activators as adjuvants in infection and cancer, and inhibitors of TLR2, TLR4, TLR7 and TLR9 for the treatment of sepsis and inflammatory diseases. Here, we focus on TLRs that hold the most promise for drug discovery research, highlighting agents that are in the discovery phase and in clinical trials,and on the emerging new aspects of TLR-mediated signalling - such as control by ubiquitination and regulation by microRNAs - that might offer further possibilities of therapeutic manipulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The evolution of vertebrate Toll-like receptors.

              The complete sequences of Takifugu Toll-like receptor (TLR) loci and gene predictions from many draft genomes enable comprehensive molecular phylogenetic analysis. Strong selective pressure for recognition of and response to pathogen-associated molecular patterns has maintained a largely unchanging TLR recognition in all vertebrates. There are six major families of vertebrate TLRs. This repertoire is distinct from that of invertebrates. TLRs within a family recognize a general class of pathogen-associated molecular patterns. Most vertebrates have exactly one gene ortholog for each TLR family. The family including TLR1 has more species-specific adaptations than other families. A major family including TLR11 is represented in humans only by a pseudogene. Coincidental evolution plays a minor role in TLR evolution. The sequencing phase of this study produced finished genomic sequences for the 12 Takifugu rubripes TLRs. In addition, we have produced >70 gene models, including sequences from the opossum, chicken, frog, dog, sea urchin, and sea squirt.
                Bookmark

                Author and article information

                Journal
                Expert Opinion on Therapeutic Patents
                Expert Opinion on Therapeutic Patents
                Informa UK Limited
                1354-3776
                1744-7674
                May 18 2016
                June 02 2016
                May 18 2016
                June 02 2016
                : 26
                : 6
                : 719-730
                Article
                10.1080/13543776.2016.1185415
                27136061
                5f96f350-4ac7-4ec3-a759-a3c0a986a078
                © 2016
                History

                Comments

                Comment on this article