7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of the Actin Cytoskeleton in Podocytes

      review-article
      1 , 2 , *
      Cells
      MDPI
      podocyte, actin cytoskeleton, foot process, slit diaphragm, focal adhesion

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Podocytes are an integral part of the glomerular filtration barrier, a structure that prevents filtration of large proteins and macromolecules into the urine. Podocyte function is dependent on actin cytoskeleton regulation within the foot processes, structures that link podocytes to the glomerular basement membrane. Actin cytoskeleton dynamics in podocyte foot processes are complex and regulated by multiple proteins and other factors. There are two key signal integration and structural hubs within foot processes that regulate the actin cytoskeleton: the slit diaphragm and focal adhesions. Both modulate actin filament extension as well as foot process mobility. No matter what the initial cause, the final common pathway of podocyte damage is dysregulation of the actin cytoskeleton leading to foot process retraction and proteinuria. Disruption of the actin cytoskeleton can be due to acquired causes or to genetic mutations in key actin regulatory and signaling proteins. Here, we describe the major structural and signaling components that regulate the actin cytoskeleton in podocytes as well as acquired and genetic causes of actin dysregulation.

          Related collections

          Most cited references209

          • Record: found
          • Abstract: found
          • Article: not found

          FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly.

          Cell migration is a complex, highly regulated process that involves the continuous formation and disassembly of adhesions (adhesion turnover). Adhesion formation takes place at the leading edge of protrusions, whereas disassembly occurs both at the cell rear and at the base of protrusions. Despite the importance of these processes in migration, the mechanisms that regulate adhesion formation and disassembly remain largely unknown. Here we develop quantitative assays to measure the rate of incorporation of molecules into adhesions and the departure of these proteins from adhesions. Using these assays, we show that kinases and adaptor molecules, including focal adhesion kinase (FAK), Src, p130CAS, paxillin, extracellular signal-regulated kinase (ERK) and myosin light-chain kinase (MLCK) are critical for adhesion turnover at the cell front, a process central to migration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome.

            Familial idiopathic nephrotic syndromes represent a heterogeneous group of kidney disorders, and include autosomal recessive steroid-resistant nephrotic syndrome, which is characterized by early childhood onset of proteinuria, rapid progression to end-stage renal disease and focal segmental glomerulosclerosis. A causative gene for this disease, NPHS2, was mapped to 1q25-31 and we report here its identification by positional cloning. NPHS2 is almost exclusively expressed in the podocytes of fetal and mature kidney glomeruli, and encodes a new integral membrane protein, podocin, belonging to the stomatin protein family. We found ten different NPHS2 mutations, comprising nonsense, frameshift and missense mutations, to segregate with the disease, demonstrating a crucial role for podocin in the function of the glomerular filtration barrier.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis.

              Focal and segmental glomerulosclerosis (FSGS) is a common, non-specific renal lesion. Although it is often secondary to other disorders, including HIV infection, obesity, hypertension and diabetes, FSGS also appears as an isolated, idiopathic condition. FSGS is characterized by increased urinary protein excretion and decreasing kidney function. Often, renal insufficiency in affected patients progresses to end-stage renal failure, a highly morbid state requiring either dialysis therapy or kidney transplantation. Here we present evidence implicating mutations in the gene encoding alpha-actinin-4 (ACTN4; ref. 2), an actin-filament crosslinking protein, as the cause of disease in three families with an autosomal dominant form of FSGS. In vitro, mutant alpha-actinin-4 binds filamentous actin (F-actin) more strongly than does wild-type alpha-actinin-4. Regulation of the actin cytoskeleton of glomerular podocytes may be altered in this group of patients. Our results have implications for understanding the role of the cytoskeleton in the pathophysiology of kidney disease and may lead to a better understanding of the genetic basis of susceptibility to kidney damage.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                16 July 2020
                July 2020
                : 9
                : 7
                : 1700
                Affiliations
                [1 ]Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; judith.blaine@ 123456cuanschutz.edu
                [2 ]Renal Division, University of Colorado Anschutz Medical Campus and Denver Health Medical Center, Aurora, CO 80045, USA
                Author notes
                [* ]Correspondence: james.dylewski@ 123456cuanschutz.edu ; Tel.: +303-724-4841
                Article
                cells-09-01700
                10.3390/cells9071700
                7408282
                32708597
                5fa5986b-d7dd-47da-b0e3-210a6bc33fa2
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 June 2020
                : 07 July 2020
                Categories
                Review

                podocyte,actin cytoskeleton,foot process,slit diaphragm,focal adhesion

                Comments

                Comment on this article