Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

GSK-3: Functional Insights from Cell Biology and Animal Models

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded in mammals by two genes that generate two related proteins: GSK-3α and GSK-3β. GSK-3 is active in cells under resting conditions and is primarily regulated through inhibition or diversion of its activity. While GSK-3 is one of the few protein kinases that can be inactivated by phosphorylation, the mechanisms of GSK-3 regulation are more varied and not fully understood. Precise control appears to be achieved by a combination of phosphorylation, localization, and sequestration by a number of GSK-3-binding proteins. GSK-3 lies downstream of several major signaling pathways including the phosphatidylinositol 3′ kinase pathway, the Wnt pathway, Hedgehog signaling and Notch. Specific pools of GSK-3, which differ in intracellular localization, binding partner affinity, and relative amount are differentially sensitized to several distinct signaling pathways and these sequestration mechanisms contribute to pathway insulation and signal specificity. Dysregulation of signaling pathways involving GSK-3 is associated with the pathogenesis of numerous neurological and psychiatric disorders and there are data suggesting GSK-3 isoform-selective roles in several of these. Here, we review the current knowledge of GSK-3 regulation and targets and discuss the various animal models that have been employed to dissect the functions of GSK-3 in brain development and function through the use of conventional or conditional knockout mice as well as transgenic mice. These studies have revealed fundamental roles for these protein kinases in memory, behavior, and neuronal fate determination and provide insights into possible therapeutic interventions.

      Related collections

      Most cited references 333

      • Record: found
      • Abstract: found
      • Article: not found

      Wnt/beta-catenin signaling: components, mechanisms, and diseases.

      Signaling by the Wnt family of secreted glycolipoproteins via the transcriptional coactivator beta-catenin controls embryonic development and adult homeostasis. Here we review recent progress in this so-called canonical Wnt signaling pathway. We discuss Wnt ligands, agonists, and antagonists, and their interactions with Wnt receptors. We also dissect critical events that regulate beta-catenin stability, from Wnt receptors to the cytoplasmic beta-catenin destruction complex, and nuclear machinery that mediates beta-catenin-dependent transcription. Finally, we highlight some key aspects of Wnt/beta-catenin signaling in human diseases including congenital malformations, cancer, and osteoporosis, and discuss potential therapeutic implications.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        The Wnt signaling pathway in development and disease.

        Tight control of cell-cell communication is essential for the generation of a normally patterned embryo. A critical mediator of key cell-cell signaling events during embryogenesis is the highly conserved Wnt family of secreted proteins. Recent biochemical and genetic analyses have greatly enriched our understanding of how Wnts signal, and the list of canonical Wnt signaling components has exploded. The data reveal that multiple extracellular, cytoplasmic, and nuclear regulators intricately modulate Wnt signaling levels. In addition, receptor-ligand specificity and feedback loops help to determine Wnt signaling outputs. Wnts are required for adult tissue maintenance, and perturbations in Wnt signaling promote both human degenerative diseases and cancer. The next few years are likely to see novel therapeutic reagents aimed at controlling Wnt signaling in order to alleviate these conditions.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.

          Glycogen synthase kinase-3 (GSK3) is implicated in the regulation of several physiological processes, including the control of glycogen and protein synthesis by insulin, modulation of the transcription factors AP-1 and CREB, the specification of cell fate in Drosophila and dorsoventral patterning in Xenopus embryos. GSK3 is inhibited by serine phosphorylation in response to insulin or growth factors and in vitro by either MAP kinase-activated protein (MAPKAP) kinase-1 (also known as p90rsk) or p70 ribosomal S6 kinase (p70S6k). Here we show, however, that agents which prevent the activation of both MAPKAP kinase-1 and p70S6k by insulin in vivo do not block the phosphorylation and inhibition of GSK3. Another insulin-stimulated protein kinase inactivates GSK3 under these conditions, and we demonstrate that it is the product of the proto-oncogene protein kinase B (PKB, also known as Akt/RAC). Like the inhibition of GSK3 (refs 10, 14), the activation of PKB is prevented by inhibitors of phosphatidylinositol (PI) 3-kinase.
            Bookmark

            Author and article information

            Affiliations
            1simpleSamuel Lunenfeld Research Institute, Mount Sinai Hospital Toronto, ON, Canada
            2simpleDepartment of Medical Biophysics, University of Toronto Toronto, ON, Canada
            Author notes

            Edited by: Richard Scott Jope, University of Alabama at Birmingham, USA

            Reviewed by: Urs Albrecht, University of Fribourg, Switzerland; Hagit Eldar-Finkelman, Tel Aviv University, Israel

            *Correspondence: Oksana Kaidanovich-Beilin, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 983, Toronto, ON, Canada M5G 1X5. e-mail: beilin@ 123456lunenfeld.ca ; James Robert Woodgett, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 982, Toronto, ON, Canada M5G 1X5. e-mail: woodgett@ 123456mshri.on.ca
            Journal
            Front Mol Neurosci
            Front. Mol. Neurosci.
            Frontiers in Molecular Neuroscience
            Frontiers Research Foundation
            1662-5099
            16 November 2011
            2011
            : 4
            3217193
            22110425
            10.3389/fnmol.2011.00040
            Copyright © 2011 Kaidanovich-Beilin and Woodgett.

            This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

            Counts
            Figures: 3, Tables: 6, Equations: 0, References: 314, Pages: 25, Words: 21608
            Categories
            Neuroscience
            Review Article

            Neurosciences

            behavior, animal models, signal transduction, gsk-3

            Comments

            Comment on this article