173
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GSK-3: Functional Insights from Cell Biology and Animal Models

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded in mammals by two genes that generate two related proteins: GSK-3α and GSK-3β. GSK-3 is active in cells under resting conditions and is primarily regulated through inhibition or diversion of its activity. While GSK-3 is one of the few protein kinases that can be inactivated by phosphorylation, the mechanisms of GSK-3 regulation are more varied and not fully understood. Precise control appears to be achieved by a combination of phosphorylation, localization, and sequestration by a number of GSK-3-binding proteins. GSK-3 lies downstream of several major signaling pathways including the phosphatidylinositol 3′ kinase pathway, the Wnt pathway, Hedgehog signaling and Notch. Specific pools of GSK-3, which differ in intracellular localization, binding partner affinity, and relative amount are differentially sensitized to several distinct signaling pathways and these sequestration mechanisms contribute to pathway insulation and signal specificity. Dysregulation of signaling pathways involving GSK-3 is associated with the pathogenesis of numerous neurological and psychiatric disorders and there are data suggesting GSK-3 isoform-selective roles in several of these. Here, we review the current knowledge of GSK-3 regulation and targets and discuss the various animal models that have been employed to dissect the functions of GSK-3 in brain development and function through the use of conventional or conditional knockout mice as well as transgenic mice. These studies have revealed fundamental roles for these protein kinases in memory, behavior, and neuronal fate determination and provide insights into possible therapeutic interventions.

          Related collections

          Most cited references286

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.

          Glycogen synthase kinase-3 (GSK3) is implicated in the regulation of several physiological processes, including the control of glycogen and protein synthesis by insulin, modulation of the transcription factors AP-1 and CREB, the specification of cell fate in Drosophila and dorsoventral patterning in Xenopus embryos. GSK3 is inhibited by serine phosphorylation in response to insulin or growth factors and in vitro by either MAP kinase-activated protein (MAPKAP) kinase-1 (also known as p90rsk) or p70 ribosomal S6 kinase (p70S6k). Here we show, however, that agents which prevent the activation of both MAPKAP kinase-1 and p70S6k by insulin in vivo do not block the phosphorylation and inhibition of GSK3. Another insulin-stimulated protein kinase inactivates GSK3 under these conditions, and we demonstrate that it is the product of the proto-oncogene protein kinase B (PKB, also known as Akt/RAC). Like the inhibition of GSK3 (refs 10, 14), the activation of PKB is prevented by inhibitors of phosphatidylinositol (PI) 3-kinase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth.

            Mutation in the TSC2 tumor suppressor causes tuberous sclerosis complex, a disease characterized by hamartoma formation in multiple tissues. TSC2 inhibits cell growth by acting as a GTPase-activating protein toward Rheb, thereby inhibiting mTOR, a central controller of cell growth. Here, we show that Wnt activates mTOR via inhibiting GSK3 without involving beta-catenin-dependent transcription. GSK3 inhibits the mTOR pathway by phosphorylating TSC2 in a manner dependent on AMPK-priming phosphorylation. Inhibition of mTOR by rapamycin blocks Wnt-induced cell growth and tumor development, suggesting a potential therapeutic value of rapamycin for cancers with activated Wnt signaling. Our results show that, in addition to transcriptional activation, Wnt stimulates translation and cell growth by activating the TSC-mTOR pathway. Furthermore, the sequential phosphorylation of TSC2 by AMPK and GSK3 reveals a molecular mechanism of signal integration in cell growth regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The glamour and gloom of glycogen synthase kinase-3.

              Glycogen synthase kinase-3 (GSK3) is now recognized as a key component of a surprisingly large number of cellular processes and diseases. Several mechanisms play a part in controlling the actions of GSK3, including phosphorylation, protein complex formation, and subcellular distribution. These are used to control and direct the far-reaching influences of GSK3 on cellular structure, growth, motility and apoptosis. Dysregulation of GSK3 is linked to several prevalent pathological conditions, such as diabetes and/or insulin resistance, and Alzheimer's disease. Therefore, much effort is currently directed towards understanding the functions and control of GSK3, and identifying methods capable of diminishing the deleterious impact of GSK3 in pathological conditions.
                Bookmark

                Author and article information

                Journal
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Research Foundation
                1662-5099
                16 November 2011
                2011
                : 4
                : 40
                Affiliations
                [1] 1simpleSamuel Lunenfeld Research Institute, Mount Sinai Hospital Toronto, ON, Canada
                [2] 2simpleDepartment of Medical Biophysics, University of Toronto Toronto, ON, Canada
                Author notes

                Edited by: Richard Scott Jope, University of Alabama at Birmingham, USA

                Reviewed by: Urs Albrecht, University of Fribourg, Switzerland; Hagit Eldar-Finkelman, Tel Aviv University, Israel

                *Correspondence: Oksana Kaidanovich-Beilin, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 983, Toronto, ON, Canada M5G 1X5. e-mail: beilin@ 123456lunenfeld.ca ; James Robert Woodgett, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 982, Toronto, ON, Canada M5G 1X5. e-mail: woodgett@ 123456mshri.on.ca
                Article
                10.3389/fnmol.2011.00040
                3217193
                22110425
                5fa85409-e030-4e84-b699-46dce084b703
                Copyright © 2011 Kaidanovich-Beilin and Woodgett.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 30 August 2011
                : 23 October 2011
                Page count
                Figures: 3, Tables: 6, Equations: 0, References: 314, Pages: 25, Words: 21608
                Categories
                Neuroscience
                Review Article

                Neurosciences
                behavior,gsk-3,signal transduction,animal models
                Neurosciences
                behavior, gsk-3, signal transduction, animal models

                Comments

                Comment on this article