15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Two New Lytic Bacteriophages of the Myoviridae Family Against Carbapenem-Resistant Acinetobacter baumannii

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two lytic bacteriophages, WCHABP1 and WCHABP12, were recovered from hospital sewage and were able to infect 9 and 12 out of 18 carbapenem-resistant Acinetobacter baumannii clinical strains, which belonged to different clones. Electron microscopy scan showed that both bacteriophages had the similar morphology as those of the Myoviridae family. Whole genomic sequencing revealed 45.4- or 45.8-kb genome with a 37.6% GC content for WCHABP1 and WCHABP12, both of which showed significant DNA sequence similarity with bacteriophages of the Ap22virus genus within the Myoviridae family. Taxonomic analysis was therefore performed following the proposal approved by the International Committee on Taxonomy of Viruses, which confirmed that WCHABP1 and WCHABP12 represented two new species of the Ap22virus genus. No tRNAs but 88 and 89 open reading frames (ORFs) were predicted for the two bacteriophages, among which 22 and 21 had known function and encoded proteins for morphogenesis, packaging, lysis, and nucleiotide metabolism. The C-terminal amino acids of the large unit of fiber tail proteins varied between the bacteriophages, which may explain their different host ranges. For most lytic bacteriophages, a set of holin and endolysin are required for lysis. However, no known holin-encoding genes were identified in WCHABP1 and WCHABP12, suggesting that they may use alternative, yet-to-be-identified, novel holins for host cell membrane lysis. To test the efficacy of the bacteriophages in protecting against A. baumannii infection, a Galleria mellonella larva model was used. Only <20% G. mellonella larvae survived at 96 h after being infected by carbapenem-resistant A. baumannii strains, from which the two bacteriophages were recovered. With the administration of WCHABP1 and WCHABP12, the survival of larvae increased to 75%, while the treatment of polymyxin B only slightly increased the survival rate to 25%. The isolation of two new lytic bacteriophages in this study could expand our sight on Acinetobacter bacteriophages and may offer new potential therapeutic alternatives against A. baumannii.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Uncovering the mechanisms of Acinetobacter baumannii virulence

            Acinetobacter baumannii is a nosocomial pathogen that causes ventilator-associated as well as bloodstream infections in critically ill patients, and the spread of multidrug-resistant Acinetobacter strains is cause for concern. Much of the success of A. baumannii can be directly attributed to its plastic genome, which rapidly mutates when faced with adversity and stress. However, fundamental virulence mechanisms beyond canonical drug resistance were recently uncovered that enable A. baumannii and, to a limited extent, other medically relevant Acinetobacter species to successfully thrive in the health-care environment. In this Review, we explore the molecular features that promote environmental persistence, including desiccation resistance, biofilm formation and motility, and we discuss the most recently identified virulence factors, such as secretion systems, surface glycoconjugates and micronutrient acquisition systems that collectively enable these pathogens to successfully infect their hosts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element.

              We demonstrated that the GCC box, which is an 11-bp sequence (TAAGAGCCGCC) conserved in the 5' upstream region of ethylene-inducible pathogenesis-related protein genes in Nicotiana spp and in some other plants, is the sequence that is essential for ethylene responsiveness when incorporated into a heterologous promoter. Competitive gel retardation assays showed DNA binding activities to be specific to the GCC box sequence in tobacco nuclear extracts. Four different cDNAs encoding DNA binding proteins specific for the GCC box sequence were isolated, and their products were designated ethylene-responsive element binding proteins (EREBPs). The deduced amino acid sequences of EREBPs exhibited no homology with those of known DNA binding proteins or transcription factors; neither did the deduced proteins contain a basic leucine zipper or zinc finger motif. The DNA binding domain was identified within a region of 59 amino acid residues that was common to all four deduced EREBPs. Regions highly homologous to the DNA binding domain of EREBPs were found in proteins deduced from the cDNAs of various plants, suggesting that this domain is evolutionarily conserved in plants. RNA gel blot analysis revealed that accumulation of mRNAs for EREBPs was induced by ethylene, but individual EREBPs exhibited different patterns of expression.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                30 April 2018
                2018
                : 9
                : 850
                Affiliations
                [1] 1Center of Infectious Diseases, West China Hospital, Sichuan University , Chengdu, China
                [2] 2Division of Infectious Diseases, State Key Laboratory of Biotherapy , Chengdu, China
                [3] 3Department of Infection Control, West China Hospital, Sichuan University , Chengdu, China
                [4] 4Center for Pathogen Research, West China Hospital, Sichuan University , Chengdu, China
                Author notes

                Edited by: Xian-Zhi Li, Health Canada, Canada

                Reviewed by: Nina Chanishvili, George Eliava Institute of Bacteriophage, Microbiology and Virology, Georgia; Paul Hyman, Ashland University, United States; Remy A. Bonnin, Université Paris-Saclay, France

                *Correspondence: Zhiyong Zong zongzhiy@ 123456scu.edu.cn

                This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.00850
                5936750
                29760690
                5fa8a144-a455-48d3-963e-eb589a3d39a8
                Copyright © 2018 Zhou, Feng and Zong.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 January 2018
                : 13 April 2018
                Page count
                Figures: 4, Tables: 3, Equations: 0, References: 62, Pages: 11, Words: 7641
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81222025
                Award ID: 81572030
                Award ID: 81661130159
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                bacteriophage,phage therapy,carbapenem resistance,acinetobacter baumannii,galleria mellonella

                Comments

                Comment on this article