14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advanced glycation end products induce neural tube defects through elevating oxidative stress in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          Our previous study showed an association between advanced glycation end products (AGEs) and neural tube defects (NTDs). To understand the molecular mechanisms underlying the effect of AGEs on neural tube development, C57BL/6 female mice were fed for 4 weeks with commercial food containing 3% advanced glycation end product bovine serum albumin (AGE-BSA) or 3% bovine serum albumin (BSA) as a control. After mating mice, oxidative stress markers including malondialdehyde and H 2O 2 were measured at embryonic day 7.5 (E7.5) of gestation, and the level of intracellular reactive oxygen species (ROS) in embryonic cells was determined at E8.5. In addition to evaluating NTDs, an enzyme-linked immunosorbent assay was used to determine the effect of embryonic protein administration on the N-(carboxymethyl) lysine reactivity of acid and carboxyethyl lysine antibodies at E10.5. The results showed a remarkable increase in the incidence of NTDs at E10.5 in embryos of mice fed with AGE-BSA (no hyperglycemia) compared with control mice. Moreover, embryonic protein administration resulted in a noticeable increase in the reactivity of N-(carboxymethyl) lysine and N(ε)-(carboxyethyl) lysine antibodies. Malondialdehyde and H 2O 2 levels in embryonic cells were increased at E7.5, followed by increased intracellular ROS levels at E8.5. Vitamin E supplementation could partially recover these phenomena. Collectively, these results suggest that AGE-BSA could induce NTDs in the absence of hyperglycemia by an underlying mechanism that is at least partially associated with its capacity to increase embryonic oxidative stress levels.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation.

          The products of nonenzymatic glycation and oxidation of proteins and lipids, the advanced glycation end products (AGEs), accumulate in a wide variety of environments. AGEs may be generated rapidly or over long times stimulated by a range of distinct triggering mechanisms, thereby accounting for their roles in multiple settings and disease states. A critical property of AGEs is their ability to activate receptor for advanced glycation end products (RAGE), a signal transduction receptor of the immunoglobulin superfamily. It is our hypothesis that due to such interaction, AGEs impart a potent impact in tissues, stimulating processes linked to inflammation and its consequences. We hypothesize that AGEs cause perturbation in a diverse group of diseases, such as diabetes, inflammation, neurodegeneration, and aging. Thus, we propose that targeting this pathway may represent a logical step in the prevention/treatment of the sequelae of these disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tobacco smoke is a source of toxic reactive glycation products.

            Smokers have a significantly higher risk for developing coronary and cerebrovascular disease than nonsmokers. Advanced glycation end products (AGEs) are reactive, cross-linking moieties that form from the reaction of reducing sugars and the amino groups of proteins, lipids, and nucleic acids. AGEs circulate in high concentrations in the plasma of patients with diabetes or renal insufficiency and have been linked to the accelerated vasculopathy seen in patients with these diseases. Because the curing of tobacco takes place under conditions that could lead to the formation of glycation products, we examined whether tobacco and tobacco smoke could generate these reactive species that would increase AGE formation in vivo. Our findings show that reactive glycation products are present in aqueous extracts of tobacco and in tobacco smoke in a form that can rapidly react with proteins to form AGEs. This reaction can be inhibited by aminoguanidine, a known inhibitor of AGE formation. We have named these glycation products "glycotoxins." Like other known reducing sugars and reactive glycation products, glycotoxins form smoke, react with protein, exhibit a specific fluorescence when cross-linked to proteins, and are mutagenic. Glycotoxins are transferred to the serum proteins of human smokers. AGE-apolipoprotein B and serum AGE levels in cigarette smokers were significantly higher than those in nonsmokers. These results suggest that increased glycotoxin exposure may contribute to the increased incidence of atherosclerosis and high prevalence of cancer in smokers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus.

              Accelerated glycoxidation takes part in the development of diabetic complications. We determined advanced glycation end-products (AGEs) and advanced oxidation protein products (AOPP) in the sera of 52 patients with diabetes mellitus (DM) - 18 with DM Type 1 and 34 with DM Type 2 and examined their relationship to the compensation of the disease. AGEs were estimated spectrofluorimetrically (350 nm/440 nm) whereas AOPP were determined spectro-photometrically (340 nm). AGEs were elevated only in DM Type 2 (DM2 5.11+/-1.15 x 10(3) AU/g vs controls 4.08+/-0.71 x 10(3) AU/g, p<0.001, vs DM1 4.14+/-0.86 x 10(3) AU/g, p<0.005, DM1 vs controls were not significant). AOPP were elevated significantly in both types of DM with higher levels in DM Type 2 (DM2 157.50+/-75.15 micromol/l vs healthy subjects 79.80+/-23.72 micromol/l, p<0.001, vs DM1 97.50+/-30.91 micromol/l, p<0.005, DM1 vs controls p<0.05). There was a tight correlation between AGEs and AOPP in both types of DM (DM1 r=0.75, DM2 r=0.47 (p<0.05)) and both AGEs and AOPP correlated with triglycerides. In DM Type 1 only, AGEs correlated with HbA1c r=0.47 (p<0.05) and with blood glucose. Slight but not significant differences in AGEs and AOPP levels were observed in patients with or without diabetic complications. Oxidative stress is increased in both types of DM, more in Type 2 where it contributes to the formation of glycoxidation products.
                Bookmark

                Author and article information

                Journal
                Neural Regen Res
                Neural Regen Res
                NRR
                Neural Regeneration Research
                Medknow Publications & Media Pvt Ltd (India )
                1673-5374
                1876-7958
                August 2018
                : 13
                : 8
                : 1368-1374
                Affiliations
                [1]Laboratory for Development, College of Life Sciences, Northwest University, Xi’an, Shaanxi Province, China
                Author notes
                [* ] Correspondence to: Ru-lin Li, rulinli@ 123456nwu.edu.cn .

                Author contributions: RLL designed this study and wrote the paper. WWZ performed experiments. WWZ and BYG analyzed data. All authors approved the final version of the paper.

                Author information
                http://orcid.org/0000-0003-0965-2518
                Article
                NRR-13-1368
                10.4103/1673-5374.235249
                6108193
                30106048
                5fabba7e-dd36-4352-b2a6-1798bf77379d
                Copyright: © Neural Regeneration Research

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 06 January 2018
                Categories
                Research Article

                nerve regeneration,neural tube defects,advanced glycation end products,diabetic embryopathy,oxidative stress,n-(carboxymethyl)lysine,malondiadehyde,n(ε)-(carboxyethyl) lysine,embryo,h2o2,bovine serum albumin,neural regeneration

                Comments

                Comment on this article