31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Harmful Freshwater Algal Blooms, With an Emphasis on Cyanobacteria

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Suspended algae, or phytoplankton, are the prime source of organic matter supporting food webs in freshwater ecosystems. Phytoplankton productivity is reliant on adequate nutrient supplies; however, increasing rates of nutrient supply, much of it manmade, fuels accelerating primary production or eutrophication. An obvious and problematic symptom of eutrophication is rapid growth and accumulations of phytoplankton, leading to discoloration of affected waters. These events are termed blooms. Blooms are a prime agent of water quality deterioration, including foul odors and tastes, deoxygenation of bottom waters (hypoxia and anoxia), toxicity, fish kills, and food web alterations. Toxins produced by blooms can adversely affect animal (including human) health in waters used for recreational and drinking purposes. Numerous freshwater genera within the diverse phyla comprising the phytoplankton are capable of forming blooms; however, the blue-green algae (or cyanobacteria) are the most notorious bloom formers. This is especially true for harmful toxic, surface-dwelling, scum-forming genera (e.g., Anabaena, Aphanizomenon, Nodularia, Microcystis) and some subsurface bloom-formers (Cylindrospermopsis, Oscillatoria) that are adept at exploiting nutrient-enriched conditions. They thrive in highly productive waters by being able to rapidly migrate between radiance-rich surface waters and nutrient-rich bottom waters. Furthermore, many harmful species are tolerant of extreme environmental conditions, including very high light levels, high temperatures, various degrees of desiccation, and periodic nutrient deprivation. Some of the most noxious cyanobacterial bloom genera (e.g., Anabaena, Aphanizomenon, Cylindrospermopsis, Nodularia) are capable of fixing atmospheric nitrogen (N 2), enabling them to periodically dominate under nitrogen-limited conditions. Cyanobacteria produce a range of organic compounds, including those that are toxic to higher-ranked consumers, from zooplankton to further up the food chain. Both N 2- and non-N 2-fixing genera participate in mutualistic and symbiotic associations with microorganisms, higher plants, and animals. These associations appear to be of great benefit to their survival and periodic dominance. In this review, we address the ecological impacts and environmental controls of harmful blooms, with an emphasis on the ecology, physiology, and management of cyanobacterial bloom taxa. Combinations of physical, chemical, and biotic features of natural waters function in a synergistic fashion to determine the sensitivity of water bodies. In waters susceptible to blooms, human activities in water- and airsheds have been linked to the extent and magnitudes of blooms. Control and management of cyanobacterial and other phytoplankton blooms invariably includes nutrient input constraints, most often focused on nitrogen (N) and/or phosphorus (P). The types and amount of nutrient input constraints depend on hydrologic, climatic, geographic, and geologic factors, which interact with anthropogenic and natural nutrient input regimes. While single nutrient input constraints may be effective in some water bodies, dual N and P input reductions are usually required for effective long-term control and management of harmful blooms. In some systems where hydrologic manipulations (i.e., plentiful water supplies) are possible, reducing the water residence time by enhanced flushing and artificial mixing (in conjunction with nutrient input constraints) can be particularly effective alternatives. Implications of various management strategies, based on combined ecophysiological and environmental considerations, are discussed.

          Related collections

          Author and article information

          Journal
          ScientificWorldJournal
          ScientificWorldJournal
          TSWJ
          The Scientific World Journal
          TheScientificWorldJOURNAL
          2356-6140
          1537-744X
          2001
          4 April 2001
          : 1
          : 76-113
          Affiliations
          Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC 28557, USA
          Author notes
          Article
          139109
          10.1100/tsw.2001.16
          6083932
          12805693
          5faf7db0-7080-4a59-9e64-0e8087f3d9b0
          Copyright © 2001 Hans W. Paerl et al.

          This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

          History
          Funding
          Funded by: National Science Foundation
          Award ID: OCE 94-15985
          Funded by: National Science Foundation
          Award ID: DEB 9815495
          Funded by: U.S. Department of Agriculture
          Award ID: NCR-9600509
          Funded by: U.S. Environmental Protection Agency
          Award ID: R825243-10-0
          Categories
          Review Article

          Uncategorized
          Uncategorized

          Comments

          Comment on this article