12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah-Waardenburg syndrome).

      Nature genetics
      Amino Acid Sequence, Base Sequence, DNA, genetics, DNA Primers, Endothelins, Female, Hirschsprung Disease, complications, Homozygote, Humans, Male, Molecular Sequence Data, Mutation, Pedigree, Phenotype, Waardenburg Syndrome, classification

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hirschsprung disease (HSCR) or colonic aganglionosis is a congenital disorder characterized by an absence of intramural ganglia along variable lengths of the colon resulting in intestinal obstruction. The incidence of HSCR is 1 in 5,000 live births. Mutations in the RET gene, which codes for a receptor tyrosine kinase, and in EDNRB which codes for the endothelin-B receptor, have been shown to be associated with HSCR in humans. The lethal-spotted mouse which has pigment abnormalities, but also colonic aganglionosis, carries a mutation in the gene coding for endothelin 3 (Edn3), the ligand for the receptor protein encoded by EDNRB. Here, we describe a mutation of the human gene for endothelin 3 (EDN3), homozygously present in a patient with a combined Waardenburg syndrome type 2 (WS2) and HSCR phenotype (Shah-Waardenburg syndrome). The mutation, Cys159Phe, in exon 3 in the ET-3 like domain of EDN3, presumably affects the proteolytic processing of the preproendothelin to the mature peptide EDN3. The patient's parents were first cousins. A previous child in this family had been diagnosed with a similar combination of HSCR, depigmentation and deafness. Depigmentation and deafness were present in other relatives. Moreover, we present a further indication for the involvement of EDNRB in HSCR by reporting a novel mutation detected in one of 40 unselected HSCR patients.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons.

          Defects in the gene encoding the endothelin-B receptor produce aganglionic megacolon and pigmentary disorders in mice and humans. We report that a targeted disruption of the mouse endothelin-3 ligand (EDN3) gene produces a similar recessive phenotype of megacolon and coat color spotting. A natural recessive mutation that results in the same developmental defects in mice, lethal spotting (ls), failed to complement the targeted EDN3 allele. The ls mice carry a point mutation of the EDN3 gene, which replaces the Arg residue at the C-terminus of the inactive intermediate big EDN3 with a Trp residue. This mutation prevents the proteolytic activation of big EDN3 by ECE-1. These findings indicate that interaction of EDN3 with the endothelin-B receptor is essential in the development of neural crest-derived cell lineages. We postulate that defects in the human EDN3 gene may cause Hirschsprung's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice.

            Endothelins act on two subtypes of G protein-coupled receptors, termed endothelin-A and endothelin-B receptors. We report a targeted disruption of the mouse endothelin-B receptor (EDNRB) gene that results in aganglionic megacolon associated with coat color spotting, resembling a hereditary syndrome of mice, humans, and other mammalian species. Piebald-lethal (sl) mice exhibit a recessive phenotype identical to that of the EDNRB knockout mice. In crossbreeding studies, the two mutations show no complementation. Southern blotting revealed a deletion encompassing the entire EDNRB gene in the sl chromosome. A milder allele, piebald (s), which produces coat color spotting only, expresses low levels of structurally intact EDNRB mRNA and protein. These findings indicate an essential role for EDNRB in the development of two neural crest-derived cell lineages, myenteric ganglion neurons and epidermal melanocytes. We postulate that defects in the human EDNRB gene cause a hereditary form of Hirschsprung's disease that has recently been mapped to human chromosome 13, in which EDNRB is located.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes.

                Bookmark

                Author and article information

                Comments

                Comment on this article