55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The induction of pain: an integrative review

      Progress in Neurobiology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of NMDA receptors by tyrosine kinases and phosphatases.

          Protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs) are key enzymes in signal-transduction pathways for a wide range of cellular processes. PTKs and PTPs are highly expressed in the central nervous system, which is consistent with the importance of tyrosine phosphorylation in neuronal function. Protein phosphorylation is known to be involved in the regulation of neurotransmitter receptors, but the effects of tyrosine phosphorylation on neurotransmitter receptor function in the central nervous system are unknown. Here we present evidence that in mammalian central neurons tyrosine phosphorylation regulates the function of the NMDA (N-methyl-D-aspartate) receptor, a subtype of excitatory amino-acid receptor. NMDA-receptor-mediated whole-cell currents and intracellular Ca2+ responses are depressed by inhibition of PTKs. Conversely, NMDA currents are potentiated by intracellular application of the well characterized PTK pp60c-src. NMDA currents are also potentiated by intracellular administration of an inhibitor of PTPs. Protein-tyrosine phosphorylation is a new mechanism for regulating NMDA receptors and may be important in neuronal development, plasticity and toxicity.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhanced tyrosine phosphorylation of the 2B subunit of the N-methyl-D-aspartate receptor in long-term potentiation.

              Both serine/threonine and tyrosine phosphorylation of receptor proteins have been implicated in the process of long-term potentiation (LTP), but there has been no direct demonstration of a change in receptor phosphorylation after LTP induction. We show that, after induction of LTP in the dentate gyrus of anesthetized adult rats, there is an increase in the tyrosine phosphorylation of the 2B subunit of the N-methyl-D-aspartate (NMDA) receptor (NR2B), as well as several other unidentified proteins. Tyrosine phosphorylation of NR2B was measured in two ways: binding of antiphosphotyrosine antibodies (PY20) to glycoprotein(s) of 180 kDa (GP180) purified on Con A-Sepharose and binding of anti-NR2B antibodies to tyrosine-phosphorylated proteins purified on PY20-agarose. Three hours after LTP induction, anti-NR2B binding to tyrosine phosphorylated proteins, expressed as a ratio of tetanized to control dentate (Tet/Con), was 2.21 +/- 0.50 and PY20 binding to GP180 was 1.68 +/- 0.16. This increase in the number of tyrosine phosphorylated NR2B subunits occurred without a change in the total number of NR2B subunits. When the induction of LTP was blocked by pretreatment of the animal with the NMDA receptor antagonist MK801, the increase in PY20 binding to GP180 was also blocked (Tet/Con = 1.09 +/- 0.26). The increased PY20 binding to GP180 was also apparent 15 min after LTP induction (Tet/Con = 1.41 +/- 0.16) but not detectable 5 min after LTP induction (Tet/Con = 1.01 +/- 0.19). These results suggest that tyrosine phosphorylation of the NMDA receptor contributes to the maintenance of LTP.
                Bookmark

                Author and article information

                Journal
                Progress in Neurobiology
                Progress in Neurobiology
                Elsevier BV
                03010082
                January 1999
                January 1999
                : 57
                : 1
                : 1-164
                Article
                10.1016/S0301-0082(98)00048-3
                9987804
                5fd002ba-a1b7-4cd3-9e23-88aeb27c2400
                © 1999

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article