2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Antidiabetic Polypill Improves Central Pathology and Cognitive Impairment in a Mixed Model of Alzheimer’s Disease and Type 2 Diabetes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors.

          Despite mortality due to communicable diseases, poverty, and human conflicts, dementia incidence is destined to increase in the developing world in tandem with the ageing population. Current data from developing countries suggest that age-adjusted dementia prevalence estimates in 65 year olds are high (>or=5%) in certain Asian and Latin American countries, but consistently low (1-3%) in India and sub-Saharan Africa; Alzheimer's disease accounts for 60% whereas vascular dementia accounts for approximately 30% of the prevalence. Early-onset familial forms of dementia with single-gene defects occur in Latin America, Asia, and Africa. Illiteracy remains a risk factor for dementia. The APOE epsilon4 allele does not influence dementia progression in sub-Saharan Africans. Vascular factors, such as hypertension and type 2 diabetes, are likely to increase the burden of dementia. Use of traditional diets and medicinal plant extracts might aid prevention and treatment. Dementia costs in developing countries are estimated to be US$73 billion yearly, but care demands social protection, which seems scarce in these regions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo.

            Two substrates of insulin-degrading enzyme (IDE), amyloid beta-protein (Abeta) and insulin, are critically important in the pathogenesis of Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2), respectively. We previously identified IDE as a principal regulator of Abeta levels in neuronal and microglial cells. A small chromosomal region containing a mutant IDE allele has been associated with hyperinsulinemia and glucose intolerance in a rat model of DM2. Human genetic studies have implicated the IDE region of chromosome 10 in both AD and DM2. To establish whether IDE hypofunction decreases Abeta and insulin degradation in vivo and chronically increases their levels, we characterized mice with homozygous deletions of the IDE gene (IDE --). IDE deficiency resulted in a >50% decrease in Abeta degradation in both brain membrane fractions and primary neuronal cultures and a similar deficit in insulin degradation in liver. The IDE -- mice showed increased cerebral accumulation of endogenous Abeta, a hallmark of AD, and had hyperinsulinemia and glucose intolerance, hallmarks of DM2. Moreover, the mice had elevated levels of the intracellular signaling domain of the beta-amyloid precursor protein, which was recently found to be degraded by IDE in vitro. Together with emerging genetic evidence, our in vivo findings suggest that IDE hypofunction may underlie or contribute to some forms of AD and DM2 and provide a mechanism for the recently recognized association among hyperinsulinemia, diabetes, and AD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Amyloid beta oligomers induce impairment of neuronal insulin receptors.

              Recent studies have indicated an association between Alzheimer's disease (AD) and central nervous system (CNS) insulin resistance. However, the cellular mechanisms underlying the link between these two pathologies have not been elucidated. Here we show that signal transduction by neuronal insulin receptors (IR) is strikingly sensitive to disruption by soluble Abeta oligomers (also known as ADDLs). ADDLs are known to accumulate in AD brain and have recently been implicated as primary candidates for initiating deterioration of synapse function, composition, and structure. Using mature cultures of hippocampal neurons, a preferred model for studies of synaptic cell biology, we found that ADDLs caused a rapid and substantial loss of neuronal surface IRs specifically on dendrites bound by ADDLs. Removal of dendritic IRs was associated with increased receptor immunoreactivity in the cell body, indicating redistribution of the receptors. The neuronal response to insulin, measured by evoked IR tyrosine autophosphorylation, was greatly inhibited by ADDLs. Inhibition also was seen with added glutamate or potassium-induced depolarization. The effects on IR function were completely blocked by NMDA receptor antagonists, tetrodotoxin, and calcium chelator BAPTA-AM. Downstream from the IR, ADDLs induced a phosphorylation of Akt at serine473, a modification associated with neurodegenerative and insulin resistance diseases. These results identify novel factors that affect neuronal IR signaling and suggest that insulin resistance in AD brain is a response to ADDLs, which disrupt insulin signaling and may cause a brain-specific form of diabetes as part of an overall pathogenic impact on CNS synapses.
                Bookmark

                Author and article information

                Journal
                Molecular Neurobiology
                Mol Neurobiol
                Springer Science and Business Media LLC
                0893-7648
                1559-1182
                July 2018
                December 9 2017
                July 2018
                : 55
                : 7
                : 6130-6144
                Article
                10.1007/s12035-017-0825-7
                29224179
                5fd61dce-ea73-49e2-a839-0b046e8838fb
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article