17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains

      research-article
      1 , 1 , 1 , 2 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A fundamental role of the Hsp90 and Cdc37 chaperones in mediating conformational development and activation of diverse protein kinase clients is essential in signal transduction. There has been increasing evidence that the Hsp90-Cdc37 system executes its chaperoning duties by recognizing conformational instability of kinase clients and modulating their folding landscapes. The recent cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex has provided a framework for dissecting regulatory principles underlying differentiation and recruitment of protein kinase clients to the chaperone machinery. In this work, we have combined atomistic simulations with protein stability and network-based rigidity decomposition analyses to characterize dynamic factors underlying allosteric mechanism of the chaperone-kinase cycle and identify regulatory hotspots that control client recognition. Through comprehensive characterization of conformational dynamics and systematic identification of stabilization centers in the unbound and client- bound Hsp90 forms, we have simulated key stages of the allosteric mechanism, in which Hsp90 binding can induce instability and partial unfolding of Cdk4 client. Conformational landscapes of the Hsp90 and Cdk4 structures suggested that client binding can trigger coordinated dynamic changes and induce global rigidification of the Hsp90 inter-domain regions that is coupled with a concomitant increase in conformational flexibility of the kinase client. This process is allosteric in nature and can involve reciprocal dynamic exchanges that exert global effect on stability of the Hsp90 dimer, while promoting client instability. The network-based rigidity analysis and emulation of thermal unfolding of the Cdk4-cyclin D complex and Hsp90-Cdc37-Cdk4 complex revealed weak spots of kinase instability that are present in the native Cdk4 structure and are targeted by the chaperone during client recruitment. Our findings suggested that this mechanism may be exploited by the Hsp90-Cdc37 chaperone to recruit and protect intrinsically dynamic kinase clients from degradation. The results of this investigation are discussed and interpreted in the context of diverse experimental data, offering new insights into mechanisms of chaperone regulation and binding.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          The HSP90 chaperone machinery

          The heat shock protein 90 (HSP90) chaperone machinery is a key regulator of proteostasis. Recent progress has shed light on the interactions of HSP90 with its clients and co-chaperones, and on their functional implications. This opens up new avenues for the development of drugs that target HSP90, which could be valuable for the treatment of cancers and protein-misfolding diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations

            The accuracy of atomistic biomolecular modeling and simulation studies depend on the accuracy of the input structures. Preparing these structures for an atomistic modeling task, such as molecular dynamics (MD) simulation, can involve the use of a variety of different tools for: correcting errors, adding missing atoms, filling valences with hydrogens, predicting pK values for titratable amino acids, assigning predefined partial charges and radii to all atoms, and generating force field parameter/topology files for MD. Identifying, installing and effectively using the appropriate tools for each of these tasks can be difficult for novice and time-consuming for experienced users. H++ (http://biophysics.cs.vt.edu/) is a free open-source web server that automates the above key steps in the preparation of biomolecular structures for molecular modeling and simulations. H++ also performs extensive error and consistency checking, providing error/warning messages together with the suggested corrections. In addition to numerous minor improvements, the latest version of H++ includes several new capabilities and options: fix erroneous (flipped) side chain conformations for HIS, GLN and ASN, include a ligand in the input structure, process nucleic acid structures and generate a solvent box with specified number of common ions for explicit solvent MD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition.

              HSP90 is a molecular chaperone that associates with numerous substrate proteins called clients. It plays many important roles in human biology and medicine, but determinants of client recognition by HSP90 have remained frustratingly elusive. We systematically and quantitatively surveyed most human kinases, transcription factors, and E3 ligases for interaction with HSP90 and its cochaperone CDC37. Unexpectedly, many more kinases than transcription factors bound HSP90. CDC37 interacted with kinases, but not with transcription factors or E3 ligases. HSP90::kinase interactions varied continuously over a 100-fold range and provided a platform to study client protein recognition. In wild-type clients, HSP90 did not bind particular sequence motifs, but rather associated with intrinsically unstable kinases. Stabilization of the kinase in either its active or inactive conformation with diverse small molecules decreased HSP90 association. Our results establish HSP90 client recognition as a combinatorial process: CDC37 provides recognition of the kinase family, whereas thermodynamic parameters determine client binding within the family. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Data curationRole: Formal analysisRole: InvestigationRole: ValidationRole: Visualization
                Role: Data curationRole: Formal analysisRole: ValidationRole: Visualization
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                21 December 2017
                2017
                : 12
                : 12
                : e0190267
                Affiliations
                [1 ] Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
                [2 ] Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States of America
                University of Minnesota Twin Cities, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-4507-4471
                Article
                PONE-D-17-36106
                10.1371/journal.pone.0190267
                5739471
                29267381
                5fdd1d5e-cb07-490f-a846-624ddfe3f8b0
                © 2017 Czemeres et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 October 2017
                : 21 November 2017
                Page count
                Figures: 10, Tables: 0, Pages: 34
                Funding
                This work was supported by funding from Chapman University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Physical Sciences
                Physics
                Thermodynamics
                Free Energy
                Research and analysis methods
                Bioassays and physiological analysis
                Biochemical analysis
                Enzyme assays
                CDK4 kinase assay
                Research and Analysis Methods
                Chemical Characterization
                Binding Analysis
                Physical sciences
                Chemistry
                Chemical physics
                Dimers (Chemical physics)
                Physical sciences
                Physics
                Chemical physics
                Dimers (Chemical physics)
                Biology and Life Sciences
                Biochemistry
                Biochemical Simulations
                Biology and Life Sciences
                Computational Biology
                Biochemical Simulations
                Biology and Life Sciences
                Molecular Biology
                Macromolecular Structure Analysis
                Protein Structure
                Biology and Life Sciences
                Biochemistry
                Proteins
                Protein Structure
                Biology and Life Sciences
                Biochemistry
                Enzymology
                Enzyme Chemistry
                Enzyme Regulation
                Allosteric Regulation
                Biology and Life Sciences
                Biochemistry
                Proteins
                Allosteric Regulation
                Research and Analysis Methods
                Simulation and Modeling
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article