180
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Isolation of a Novel Swine Influenza Virus from Oklahoma in 2011 Which Is Distantly Related to Human Influenza C Viruses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Of the Orthomyxoviridae family of viruses, only influenza A viruses are thought to exist as multiple subtypes and has non-human maintenance hosts. In April 2011, nasal swabs were collected for virus isolation from pigs exhibiting influenza-like illness. Subsequent electron microscopic, biochemical, and genetic studies identified an orthomyxovirus with seven RNA segments exhibiting approximately 50% overall amino acid identity to human influenza C virus. Based on its genetic organizational similarities to influenza C viruses this virus has been provisionally designated C/Oklahoma/1334/2011 (C/OK). Phylogenetic analysis of the predicted viral proteins found that the divergence between C/OK and human influenza C viruses was similar to that observed between influenza A and B viruses. No cross reactivity was observed between C/OK and human influenza C viruses using hemagglutination inhibition (HI) assays. Additionally, screening of pig and human serum samples found that 9.5% and 1.3%, respectively, of individuals had measurable HI antibody titers to C/OK virus. C/OK virus was able to infect both ferrets and pigs and transmit to naive animals by direct contact. Cell culture studies showed that C/OK virus displayed a broader cellular tropism than a human influenza C virus. The observed difference in cellular tropism was further supported by structural analysis showing that hemagglutinin esterase (HE) proteins between two viruses have conserved enzymatic but divergent receptor-binding sites. These results suggest that C/OK virus represents a new subtype of influenza C viruses that currently circulates in pigs that has not been recognized previously. The presence of multiple subtypes of co-circulating influenza C viruses raises the possibility of reassortment and antigenic shift as mechanisms of influenza C virus evolution.

          Author Summary

          Influenza C viruses infect most humans during childhood. Unlike influenza A viruses, influenza C viruses exhibit little genetic variability and evolve at a comparably slower rate. Influenza A viruses exist as multiple subtypes and cause disease in numerous mammals. In contrast, influenza C viruses are comprised of a single subtype in its primary human host. Here we characterize a novel swine influenza virus, C/swine/Oklahoma/1334/2011 (C/OK), having only modest genetic similarity to human influenza C viruses. No cross-reaction was observed between C/OK and human influenza C viruses. Antibodies that cross react with C/OK were identified in a significant number of swine but not human sera samples, suggesting that C/OK circulates in pigs. Additionally, we show that C/OK is capable of infecting and transmitting by direct contact in both pigs and ferrets. These results suggest that C/OK represents a new subtype of influenza C viruses. This is significant, as co-circulation of multiple subtypes of influenza allows for rapid viral evolution through antigenic shift, a property previously only shown for influenza A viruses. The ability of C/OK to infect ferrets along with the absence of antibodies to C/OK in humans, suggests that such viruses may become a potential threat to human health.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          VERIFY3D: assessment of protein models with three-dimensional profiles.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Protein annotation and modelling servers at University College London

            The UCL Bioinformatics Group web portal offers several high quality protein structure prediction and function annotation algorithms including PSIPRED, pGenTHREADER, pDomTHREADER, MEMSAT, MetSite, DISOPRED2, DomPred and FFPred for the prediction of secondary structure, protein fold, protein structural domain, transmembrane helix topology, metal binding sites, regions of protein disorder, protein domain boundaries and protein function, respectively. We also now offer a fully automated 3D modelling pipeline: BioSerf, which performed well in CASP8 and uses a fragment-assembly approach which placed it in the top five servers in the de novo modelling category. The servers are available via the group web site at http://bioinf.cs.ucl.ac.uk/ .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Simultaneous detection of influenza A, B, and C viruses, respiratory syncytial virus, and adenoviruses in clinical samples by multiplex reverse transcription nested-PCR assay.

              The clinical presentation of infections caused by the heterogeneous group of the respiratory viruses can be very similar. Thus, the implementation of virological assays that rapidly identify the most important viruses involved is of great interest. A new multiplex reverse transcription nested-polymerase chain reaction (RT-PCR) assay that is able to detect and type different respiratory viruses simultaneously is described. Primer sets were targeted to conserved regions of nucleoprotein genes of the influenza viruses, fusion protein genes of respiratory syncytial viruses (RSV), and hexon protein genes of adenoviruses. Individual influenza A, B, and C viruses, RSV (A and B), and a generic detection of the 48 serotypes of adenoviruses were identified and differentiated by the size of the PCR products. An internal amplification control was included in the reaction mixture to exclude false-negative results due to sample inhibitors and/or extraction failure. Detection levels of 0.1 and 0.01 TCID50 of influenza A and B viruses and 1-10 molecules of cloned amplified products of influenza C virus, RSV A and B, and adenovirus serotype 1 were achieved. The specificity was checked using specimens containing other respiratory viruses and no amplified products were detected in any case. A panel of 290 respiratory specimens from the 1999-2000 and 2000-2001 seasons was used to validate the assay. Accurately amplifying RNA from influenza and RSV prototype strains and DNA from all adenovirus serotypes demonstrates the use of this method for both laboratory routine diagnosis and surveillance of all these viruses. Copyright 2003 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                February 2013
                February 2013
                7 February 2013
                : 9
                : 2
                : e1003176
                Affiliations
                [1 ]Newport Laboratories, Worthington, Minnesota, United States of America
                [2 ]Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, United States of America
                [3 ]Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
                [4 ]Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, United States of America
                [5 ]Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, United States of America
                [6 ]Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, Minnesota, United States of America
                Erasmus Medical Center, Netherlands
                Author notes

                The authors have read the journal's policy and have the following conflicts: BMH, EAC and RRS are employed by Newport Laboratories, a company that produces swine influenza virus vaccines. This does not alter the authors' adherence to all the PLoS Journal policies on sharing data and materials.

                Conceived and designed the experiments: BMH RJW RRS FL. Performed the experiments: BMH MD EAC ZR RL ZS AA BK . Analyzed the data: BMH MD EAC ZR RL ZS AA BK SC ADH RJW FL. Contributed reagents/materials/analysis tools: AA SC ADH. Wrote the paper: BMH RJW ZS ADH FL.

                Article
                PPATHOGENS-D-12-02268
                10.1371/journal.ppat.1003176
                3567177
                23408893
                5fdf977e-86a9-4761-8760-3da8d3bc25e6
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 August 2012
                : 19 December 2012
                Page count
                Pages: 11
                Funding
                This work was funded by Newport Laboratories, SDSU AES 3AH-203 fund and the South Dakota 2010 Research Center, BCAPP (Biological Control and Analysis of Applied Photonics), and National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services under Contract No. HHSN266200700005C. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Microbiology
                Virology
                Viral Classification
                Viral Evolution
                Viral Transmission and Infection
                Emerging Infectious Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article