Blog
About

14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The promise of microarrays in the management and treatment of breast cancer

      , 1 , 1 , 1

      Breast Cancer Research

      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breast cancer is the most common malignancy afflicting women from Western cultures. Developments in breast cancer molecular and cellular biology research have brought us closer to understanding the genetic basis of this disease. Recent advances in microarray technology hold the promise of further increasing our understanding of the complexity and heterogeneity of this disease, and providing new avenues for the prognostication and prediction of breast cancer outcomes. These new technologies have some limitations and have yet to be incorporated into clinical use, for both the diagnosis and treatment of women with breast cancer. The most recent application of microarray genomic technologies to studying breast cancer is the focus of this review.

          Related collections

          Most cited references 16

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular portraits of human breast tumours.

          Human breast tumours are diverse in their natural history and in their responsiveness to treatments. Variation in transcriptional programs accounts for much of the biological diversity of human cells and tumours. In each cell, signal transduction and regulatory systems transduce information from the cell's identity to its environmental status, thereby controlling the level of expression of every gene in the genome. Here we have characterized variation in gene expression patterns in a set of 65 surgical specimens of human breast tumours from 42 different individuals, using complementary DNA microarrays representing 8,102 human genes. These patterns provided a distinctive molecular portrait of each tumour. Twenty of the tumours were sampled twice, before and after a 16-week course of doxorubicin chemotherapy, and two tumours were paired with a lymph node metastasis from the same patient. Gene expression patterns in two tumour samples from the same individual were almost always more similar to each other than either was to any other sample. Sets of co-expressed genes were identified for which variation in messenger RNA levels could be related to specific features of physiological variation. The tumours could be classified into subtypes distinguished by pervasive differences in their gene expression patterns.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.

            The purpose of this study was to classify breast carcinomas based on variations in gene expression patterns derived from cDNA microarrays and to correlate tumor characteristics to clinical outcome. A total of 85 cDNA microarray experiments representing 78 cancers, three fibroadenomas, and four normal breast tissues were analyzed by hierarchical clustering. As reported previously, the cancers could be classified into a basal epithelial-like group, an ERBB2-overexpressing group and a normal breast-like group based on variations in gene expression. A novel finding was that the previously characterized luminal epithelial/estrogen receptor-positive group could be divided into at least two subgroups, each with a distinctive expression profile. These subtypes proved to be reasonably robust by clustering using two different gene sets: first, a set of 456 cDNA clones previously selected to reflect intrinsic properties of the tumors and, second, a gene set that highly correlated with patient outcome. Survival analyses on a subcohort of patients with locally advanced breast cancer uniformly treated in a prospective study showed significantly different outcomes for the patients belonging to the various groups, including a poor prognosis for the basal-like subtype and a significant difference in outcome for the two estrogen receptor-positive groups.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Gene expression profiling predicts clinical outcome of breast cancer.

              Breast cancer patients with the same stage of disease can have markedly different treatment responses and overall outcome. The strongest predictors for metastases (for example, lymph node status and histological grade) fail to classify accurately breast tumours according to their clinical behaviour. Chemotherapy or hormonal therapy reduces the risk of distant metastases by approximately one-third; however, 70-80% of patients receiving this treatment would have survived without it. None of the signatures of breast cancer gene expression reported to date allow for patient-tailored therapy strategies. Here we used DNA microarray analysis on primary breast tumours of 117 young patients, and applied supervised classification to identify a gene expression signature strongly predictive of a short interval to distant metastases ('poor prognosis' signature) in patients without tumour cells in local lymph nodes at diagnosis (lymph node negative). In addition, we established a signature that identifies tumours of BRCA1 carriers. The poor prognosis signature consists of genes regulating cell cycle, invasion, metastasis and angiogenesis. This gene expression profile will outperform all currently used clinical parameters in predicting disease outcome. Our findings provide a strategy to select patients who would benefit from adjuvant therapy.
                Bookmark

                Author and article information

                Journal
                Breast Cancer Res
                Breast Cancer Research
                BioMed Central (London )
                1465-5411
                1465-542X
                2005
                1 April 2005
                : 7
                : 3
                : 100-104
                bcr1018
                10.1186/bcr1018
                1143565
                15987438
                Copyright © 2005 BioMed Central Ltd
                Categories
                Commentary

                Oncology & Radiotherapy

                Comments

                Comment on this article