27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical and computed tomographic predictors of chronic bronchitis in COPD: a cross sectional analysis of the COPDGene study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Chronic bronchitis (CB) has been related to poor outcomes in Chronic Obstructive Pulmonary Disease (COPD). From a clinical standpoint, we have shown that subjects with CB in a group with moderate to severe airflow obstruction were younger, more likely to be current smokers, male, Caucasian, had worse health related quality of life, more dyspnea, and increased exacerbation history compared to those without CB. We sought to further refine our clinical characterization of chronic bronchitics in a larger cohort and analyze the CT correlates of CB in COPD subjects. We hypothesized that COPD patients with CB would have thicker airways and a greater history of smoking, acute bronchitis, allergic rhinitis, and occupational exposures compared to those without CB.

          Methods

          We divided 2703 GOLD 1–4 subjects in the Genetic Epidemiology of COPD (COPDGene®) Study into two groups based on symptoms: chronic bronchitis (CB+, n = 663, 24.5%) and no chronic bronchitis (CB-, n = 2040, 75.5%). Subjects underwent extensive clinical characterization, and quantitative CT analysis to calculate mean wall area percent (WA%) of 6 segmental airways was performed using VIDA PW2 ( http://www.vidadiagnostics.com). Square roots of the wall areas of bronchi with internal perimeters 10 mm and 15 mm (Pi10 and Pi15, respectively), % emphysema, %gas trapping, were calculated using 3D Slicer ( http://www.slicer.org).

          Results

          There were no differences in % emphysema (11.4 ± 12.0 vs. 12.0 ± 12.6%, p = 0.347) or % gas trapping (35.3 ± 21.2 vs. 36.3 ± 20.6%, p = 0.272) between groups. Mean segmental WA% (63.0 ± 3.2 vs. 62.0 ± 3.1%, p < 0.0001), Pi10 (3.72 ± 0.15 vs. 3.69 ± 0.14 mm, p < 0.0001), and Pi15 (5.24 ± 0.22 vs. 5.17 ± 0.20, p < 0.0001) were greater in the CB + group. Greater percentages of gastroesophageal reflux, allergic rhinitis, histories of asthma and acute bronchitis, exposures to dusts and occupational exposures, and current smokers were seen in the CB + group. In multivariate binomial logistic regression, male gender, Caucasian race, a lower FEV 1%, allergic rhinitis, history of acute bronchitis, current smoking, and increased airway wall thickness increased odds for having CB.

          Conclusions

          Histories of asthma, allergic rhinitis, acute bronchitis, current smoking, a lower FEV 1%, Caucasian race, male gender, and increased airway wall thickness are associated with CB. These data provide clinical and radiologic correlations to the clinical phenotype of CB.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Susceptibility to exacerbation in chronic obstructive pulmonary disease.

          Although we know that exacerbations are key events in chronic obstructive pulmonary disease (COPD), our understanding of their frequency, determinants, and effects is incomplete. In a large observational cohort, we tested the hypothesis that there is a frequent-exacerbation phenotype of COPD that is independent of disease severity. We analyzed the frequency and associations of exacerbation in 2138 patients enrolled in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study. Exacerbations were defined as events that led a care provider to prescribe antibiotics or corticosteroids (or both) or that led to hospitalization (severe exacerbations). Exacerbation frequency was observed over a period of 3 years. Exacerbations became more frequent (and more severe) as the severity of COPD increased; exacerbation rates in the first year of follow-up were 0.85 per person for patients with stage 2 COPD (with stage defined in accordance with Global Initiative for Chronic Obstructive Lung Disease [GOLD] stages), 1.34 for patients with stage 3, and 2.00 for patients with stage 4. Overall, 22% of patients with stage 2 disease, 33% with stage 3, and 47% with stage 4 had frequent exacerbations (two or more in the first year of follow-up). The single best predictor of exacerbations, across all GOLD stages, was a history of exacerbations. The frequent-exacerbation phenotype appeared to be relatively stable over a period of 3 years and could be predicted on the basis of the patient's recall of previous treated events. In addition to its association with more severe disease and prior exacerbations, the phenotype was independently associated with a history of gastroesophageal reflux or heartburn, poorer quality of life, and elevated white-cell count. Although exacerbations become more frequent and more severe as COPD progresses, the rate at which they occur appears to reflect an independent susceptibility phenotype. This has implications for the targeting of exacerbation-prevention strategies across the spectrum of disease severity. (Funded by GlaxoSmithKline; ClinicalTrials.gov number, NCT00292552.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronic bronchitis and chronic obstructive pulmonary disease.

            Chronic bronchitis (CB) is a common but variable phenomenon in chronic obstructive pulmonary disease (COPD). It has numerous clinical consequences, including an accelerated decline in lung function, greater risk of the development of airflow obstruction in smokers, a predisposition to lower respiratory tract infection, higher exacerbation frequency, and worse overall mortality. CB is caused by overproduction and hypersecretion of mucus by goblet cells, which leads to worsening airflow obstruction by luminal obstruction of small airways, epithelial remodeling, and alteration of airway surface tension predisposing to collapse. Despite its clinical sequelae, little is known about the pathophysiology of CB and goblet cell hyperplasia in COPD, and treatment options are limited. In addition, it is becoming increasingly apparent that in the classic COPD spectrum, with emphysema on one end and CB on the other, most patients lie somewhere in the middle. It is known now that many patients with severe emphysema can develop CB, and small airway pathology has been linked to worse clinical outcomes, such as increased mortality and lesser improvement in lung function after lung volume reduction surgery. However, in recent years, a greater understanding of the importance of CB as a phenotype to identify patients with a beneficial response to therapy has been described. Herein we review the epidemiology of CB, the evidence behind its clinical consequences, the current understanding of the pathophysiology of goblet cell hyperplasia in COPD, and current therapies for CB.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Computed tomographic measurements of airway dimensions and emphysema in smokers. Correlation with lung function.

              Chronic obstructive pulmonary disease (COPD) is characterized by the presence of airflow obstruction caused by emphysema or airway narrowing, or both. Low attenuation areas (LAA) on computed tomography (CT) have been shown to represent macroscopic or microscopic emphysema, or both. However CT has not been used to quantify the airway abnormalities in smokers with or without airflow obstruction. In this study, we used CT to evaluate both emphysema and airway wall thickening in 114 smokers. The CT measurements revealed that a decreased FEV(1) (%predicted) is associated with an increase of airway wall area and an increase of emphysema. Although both airway wall thickening and emphysema (LAA) correlated with measurements of lung function, stepwise multiple regression analysis showed that the combination of airway and emphysema measurements improved the estimate of pulmonary function test abnormalities. We conclude that both CT measurements of airway dimensions and emphysema are useful and complementary in the evaluation of the lung of smokers.
                Bookmark

                Author and article information

                Contributors
                Journal
                Respir Res
                Respir. Res
                Respiratory Research
                BioMed Central
                1465-9921
                1465-993X
                2014
                27 April 2014
                : 15
                : 1
                : 52
                Affiliations
                [1 ]Temple University School of Medicine, 785 Parkinson Pavilion, 3401 North Broad Street, Philadelphia, Pennsylvania 19140, USA
                [2 ]Department of Public Health, Temple University, Philadelphia, PA, USA
                [3 ]University of Iowa Hospital and Clinics, Iowa City, IA, USA
                [4 ]University of Michigan, Ann Arbor, MI, USA
                [5 ]Brigham and Women’s Hospital, Boston, MA, USA
                [6 ]Ewha Womans University, Seoul, Korea
                [7 ]National Jewish Health, Denver, CO, USA
                Author notes
                The COPDGene® Investigators
                Article
                1465-9921-15-52
                10.1186/1465-9921-15-52
                4067738
                24766722
                5fe0bb8d-9ff9-4bf3-9c40-a59355f897de
                Copyright © 2014 Kim et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 14 January 2014
                : 22 April 2014
                Categories
                Research

                Respiratory medicine
                chronic bronchitis,chronic obstructive pulmonary disease,airway thickening,asthma

                Comments

                Comment on this article